Dosage compensation is a mechanism first proposed by Susumu Ohno, whereby X inactivation balances X gene output between males (XY) and females (XX), while X upregulation balances X genes with autosomal gene output. These mechanisms have been actively studied in Drosophila and mice, but research regarding them lags behind in domestic species. It is unclear how the X chromosome is regulated in the sheep male germline. To address this, using single-cell RNA sequencing, we analyzed testes in three important developmental stages of sheep. We observed that the total RNA per cell from X and autosomes peaked in SSCs and spermatogonia and was then reduced in early spermatocytes. Furthermore, we counted the detected reads per gene in each cell type for X and autosomes. In cells experiencing dose compensation, close proximity to MSL (male-specific lethal), which is regulated the active X chromosome and was observed. Our results suggest that there is no dose compensation in the pre-meiotic germ cells of sheep testes and, in addition, MSL1 and MSL2 are expressed in early germ cells and involved in regulating mammalian X-chromosome inactivation and activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454834 | PMC |
http://dx.doi.org/10.3390/ani12172169 | DOI Listing |
Best Pract Res Clin Anaesthesiol
March 2024
Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA. Electronic address:
The care for lung transplantation patients is a complex, multidisciplinary coordination of physician and non-physician teams throughout the perioperative period. The diversity of etiologies of recipient end-stage lung disease further complicate care, as recipients often present with concomitant end-stage cardiac disease. Recently, the use of extracorporeal membrane oxygenation has become the mechanical circulatory support of choice to provide cardiopulmonary stability throughout the perioperative period.
View Article and Find Full Text PDFIn mammals, X-linked dosage compensation involves two processes: X-chromosome inactivation (XCI) to balance X chromosome dosage between males and females, and hyperactivation of the remaining X chromosome (Xa-hyperactivation) to achieve X-autosome balance in both sexes. Studies of both processes have largely focused on coding genes and have not accounted for transposable elements (TEs) which comprise 50% of the X-chromosome, despite TEs being suspected to have numerous epigenetic functions. This oversight is due in part to the technical challenge of capturing repeat RNAs, bioinformatically aligning them, and determining allelic origin.
View Article and Find Full Text PDFGenome Res
January 2025
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
Sex chromosomes can expand through fusion with autosomes, thereby acquiring unique evolutionary patterns. In butterflies and moths (Lepidoptera), these sex chromosome-autosome (SA) fusions occur relatively frequently, suggesting possible evolutionary advantages. Here, we investigated how SA fusion affects chromosome features and molecular evolution in leafroller moths (Lepidoptera: Tortricidae).
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Department of Neurology, Medstar Georgetown University Hospital, Washington, DC, USA.
Background: Migraine is a disabling disorder that impacts 40 million people in the US. Zavegepant is the first calcitonin gene-related peptide (CGRP) receptor antagonist nasal-spray approved for the acute treatment of migraine with or without aura in adults. This study aimed to evaluate the proportion of patients in various pain and functional disability states over 48-h, for patients treated with zavegepant 10 mg nasal-spray versus placebo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!