AI Article Synopsis

  • Hsp70, a molecular chaperone, plays a role in cancer development and interacts with co-chaperone Bag3, which connects it to cancer-signaling pathways.
  • Recent research revealed that Hsp70 also impacts macrophage movement and their ability to infiltrate tumors, but the underlying mechanisms remained unclear.
  • Discoveries showed that Bag3 links Hsp70 to the transcription factor LITAF, which regulates inflammatory cytokines; this pathway influences macrophage motility and tumor infiltration through the chemokine CSF1.

Article Abstract

The molecular chaperone Hsp70 has been implicated in multiple stages of cancer development. In these processes, a co-chaperone Bag3 links Hsp70 with signaling pathways that control cancer development. Recently, we showed that besides affecting cancer cells, Hsp70 can also regulate the motility of macrophages and their tumor infiltration. However, the mechanisms of these effects have not been explored. Here, we demonstrated that the Hsp70-bound co-chaperone Bag3 associates with a transcription factor LITAF that can regulate the expression of inflammatory cytokines and chemokines in macrophages. Via this interaction, the Hsp70-Bag3 complex regulates expression levels of LITAF by controlling its proteasome-dependent and chaperone-mediated autophagy-dependent degradation. In turn, LITAF regulates the expression of the major chemokine CSF1, and adding this chemokine to the culture medium reversed the effects of Bag3 or LITAF silencing on the macrophage motility. Together, these findings uncover the Hsp70-Bag3-LITAF-CSF1 pathway that controls macrophage motility and tumor infiltration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454964PMC
http://dx.doi.org/10.3390/cancers14174168DOI Listing

Publication Analysis

Top Keywords

macrophage motility
12
tumor infiltration
12
motility tumor
8
transcription factor
8
factor litaf
8
cancer development
8
co-chaperone bag3
8
regulates expression
8
litaf
5
hsp70-bag3 module
4

Similar Publications

: Male infertility is influenced by physiological factors like age, as well as lifestyle factors, including physical activity. However, the specific impact of sport activity on semen parameters, and thus on male fertility, remains unclear. Specifically, the aim of this systematic review is to evaluate how an intense regime of training may affect sperm parameters in professional and non-profession athletes.

View Article and Find Full Text PDF

Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.

Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Inosine Prevents Colorectal Cancer Progression by Inducing M1 Phenotypic Polarization of Macrophages.

Molecules

December 2024

Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China.

Inosine (IS) is a naturally occurring metabolite of adenosine with potent immunomodulatory effects. This study investigates the immunomodulatory effects of inosine, particularly its ability to inhibit the development of colorectal cancer (CRC) cells CT26 through modulation of macrophage phenotypes. Aside from the already reported effects of inosine on T cells, in this study, in vitro experiments revealed that inosine could modulate macrophage phenotype.

View Article and Find Full Text PDF

Background: Acinetobacter baumannii poses a significant threat globally, causing infections primarily in healthcare settings, with high mortality rates. Its adaptability to antibiotic resistance and tolerance to various stresses, including reactive oxygen species (ROS), contribute to its persistence in healthcare environments. Previous evidence suggested that the periplasmic heat shock protein, HslJ-like protein (ABUW_2868), could be involved in oxidative stress defense in A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!