A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Supervised Adversarial Learning with a Limited Dataset for Electronic Cleansing in Computed Tomographic Colonography: A Preliminary Feasibility Study. | LitMetric

Existing electronic cleansing (EC) methods for computed tomographic colonography (CTC) are generally based on image segmentation, which limits their accuracy to that of the underlying voxels. Because of the limitations of the available CTC datasets for training, traditional deep learning is of limited use in EC. The purpose of this study was to evaluate the technical feasibility of using a novel self-supervised adversarial learning scheme to perform EC with a limited training dataset with subvoxel accuracy. A three-dimensional (3D) generative adversarial network (3D GAN) was pre-trained to perform EC on CTC datasets of an anthropomorphic phantom. The 3D GAN was then fine-tuned to each input case by use of the self-supervised scheme. The architecture of the 3D GAN was optimized by use of a phantom study. The visually perceived quality of the virtual cleansing by the resulting 3D GAN compared favorably to that of commercial EC software on the virtual 3D fly-through examinations of 18 clinical CTC cases. Thus, the proposed self-supervised 3D GAN, which can be trained to perform EC on a small dataset without image annotations with subvoxel accuracy, is a potentially effective approach for addressing the remaining technical problems of EC in CTC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454562PMC
http://dx.doi.org/10.3390/cancers14174125DOI Listing

Publication Analysis

Top Keywords

self-supervised adversarial
8
adversarial learning
8
learning limited
8
electronic cleansing
8
computed tomographic
8
tomographic colonography
8
ctc datasets
8
subvoxel accuracy
8
ctc
5
gan
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!