Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456258PMC
http://dx.doi.org/10.3390/ijms231710108DOI Listing

Publication Analysis

Top Keywords

ischemia reperfusion
12
reperfusion injury
12
hypothermia
8
hypothermia alleviates
8
alleviates reductive
8
reductive stress
8
root ischemia
8
protective effects
8
effects hypothermia
8
metabolic suppression
8

Similar Publications

Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.

View Article and Find Full Text PDF

N-acetyl-tryptophan in Acute Kidney Injury after Cardiac Surgery.

J Am Soc Nephrol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.

Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.

View Article and Find Full Text PDF

Synthetic Bilirubin-Based Nanomedicine Protects Against Renal Ischemia/Reperfusion Injury Through Antioxidant and Immune-Modulating Activity.

Adv Healthc Mater

January 2025

Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.

View Article and Find Full Text PDF

Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.

Antioxid Redox Signal

January 2025

Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.

The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!