Magnetorheological elastomer (MRE) materials have the potential to be used in a wide range of applications that require long-term service in hostile environments. These widespread applications will result in the emergence of MRE-specific durability issues, where durability refers to performance under in-service environmental conditions. In response, the outdoor tropical climatic environment, combined with the effects of weathering, will be the primary focus of this paper, specifically the photodegradation of the MRE. In this study, MRE made of silicone rubber (SR) and 70 wt% micron-sized carbonyl iron particles (CIP) were prepared and subjected to mechanical and rheological testing to evaluate the effects under natural weathering. Magnetorheological elastomer samples were exposed to the natural weathering conditions of a tropical climate in Kuala Lumpur, Malaysia, for 30 days. To obtain a comprehensive view of MRE degradation during natural weathering, mechanical testing, rheology, and morphological evaluation were all performed. The mechanical and rheological properties test results revealed that after 30 days of exposure and known meteorological parameters, Young's modulus and storage modulus increased, while elongation at break decreased. The degradation processes of MRE during weathering, which are responsible for their undesirable change, were given special attention. With the help of morphological evidence, the relationship between these phenomena and the viscoelastic properties of MRE was comprehensively defined and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456540PMC
http://dx.doi.org/10.3390/ijms23179929DOI Listing

Publication Analysis

Top Keywords

natural weathering
16
mechanical rheological
12
magnetorheological elastomer
12
elastomer mre
8
tropical climate
8
mre
7
weathering
5
natural
4
weathering effects
4
mechanical
4

Similar Publications

Seepage accelerates the weathering and destruction of cultural heritage sites, posing a major preservation challenge, while the concealed nature of seepage channels complicates their detection due to noninvasive requirements. In this study, we applied a comprehensive geophysical approach, integrating electrical resistivity tomography (ERT) and self-potential (SP) techniques, to image seepage channels within the Leitai heritage site. These potential seepage channels have already caused a collapse pit measuring 3.

View Article and Find Full Text PDF

Soil fluoride enrichment process and the possible adaptation prevention principle in coal-burning fluorosis area in Southwest China.

Sci Rep

January 2025

Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, College of Earth Science & Engineering, Shandong University of Science and Technology, No.579, Qianwangang Road, West Coast New Economic District, Qingdao, 266590, Shandong, China.

Coal-burning fluorosis prevails in southwest China and other provinces. Although clay used as binder of briquettes was proven to cause coal-burning fluorosis, its enrichment processes remain unknown. The soils and rocks on typical geological units were sampled and simulation experiments were performed to detect the forming process of high-fluoride clay.

View Article and Find Full Text PDF

Tracing ancient solar cycles with tree rings and radiocarbon in the first millennium BCE.

Nat Commun

January 2025

Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland.

The Sun drives Earth's energy systems, influencing weather, ocean currents, and agricultural productivity. Understanding solar variability is critical, but direct observations are limited to 400 years of sunspot records. To extend this timeline, cosmic ray-produced radionuclides like C in tree-rings provide invaluable insights.

View Article and Find Full Text PDF

Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink.

View Article and Find Full Text PDF

[Thunderstorm asthma: current status and perspectives].

Zhonghua Jie He He Hu Xi Za Zhi

January 2025

Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Diagnosis & Treatment of COPD/Inner Mongolia Key Laboratory of Respiratory Diseases, Inner Mongolia People's Hospital, Hohhot010017, China.

Thunderstorm asthma refers to the acute exacerbation of asthma triggered by extreme weather events, which poses life-threatening risks due to severe asthma attacks and strained medical resources. Recent climate changes, including global warming, the greenhouse effect, and increased carbon emissions, have increased the levels of environmental allergens, contributing to a higher incidence of asthma and other allergic diseases. In addition, the increasing frequency of thunderstorms has exacerbated the impact of thunderstorm asthma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!