The natural sweeteners erythritol and xylitol might be helpful to reduce sugar consumption and therefore prevent obesity and diabetes. The aim of the present study was to determine the absorption and metabolization into erythronate of different concentrations of erythritol and xylitol. Seventeen healthy lean participants received intragastric solutions of 10, 25, or 50 g erythritol or 7, 17, or 35 g xylitol on three study days in a randomized order. The study was double blinded with respect to the doses administered. We assessed plasma concentrations of erythritol, xylitol, and erythronate at fixed time intervals after administration with gas chromatography-mass spectrometry. We found: (i) a dose-dependent and saturable absorption of erythritol, (ii) a very low absorption of xylitol, (iii) a dose-dependent metabolization of erythritol into erythronate, and (iv) no metabolization of xylitol into erythronate. The implications of the metabolization of erythritol into erythronate for human health remain to be determined and more research in this area is needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456049 | PMC |
http://dx.doi.org/10.3390/ijms23179867 | DOI Listing |
Molecules
November 2024
Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
Osmotic dehydration as a process of removing water from food by immersing the raw material in a hypertonic solution is used primarily to extend the shelf life of products and as a pretreatment before further processing steps, such as drying and freezing. However, due to the bi-directional mass transfer that occurs during osmotic dehydration, the process can also be used to shape sensory properties and enrich the plant matrix with nutrients. The purpose of this study was to evaluate the effect of osmotic dehydration on the absorption of potassium by beet pulp immersed in various hypertonic solutions (sucrose, inulin, erythritol, xylitol solutions) with the addition of three chemical forms of potassium (gluconate, citrate, chloride) using variable process conditions.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 108840 Moscow, Russia.
We carried out an experimental ultrasonic study of polyhydric alcohols with the general chemical formula CH(OH) with an increasing number of OH groups: glycerol ( = 3), erythritol ( = 4), xylitol ( = 5), sorbitol ( = 6). The baric and temperature dependences of the elastic characteristics of these substances in the crystalline and glassy states were studied both under isothermal compression up to 1 GPa and during the isobaric heating of 77-295 K. For glycerol, glasses were obtained at different cooling rates, glass-liquid transitions were studied at different pressures.
View Article and Find Full Text PDFEur Heart J
November 2024
Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
J Pharm Biomed Anal
January 2025
China National Accreditation Service for Conformity Assessment, Beijing 100062, China. Electronic address:
Based on precolumn derivatization, an analytical method has been developed for the determination of six high boiling point polyhydric alcohols (HBPAs, b.p. > 300 ℃) in cosmetics and toothpaste, including erythritol, xylitol, Pro-Xylane-S, inositol, mannitol, and sorbitol.
View Article and Find Full Text PDFNano Lett
August 2024
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown great promise in various applications. However, mass production of MXenes suffers from the excessive use of toxic fluorine-containing reagents. Herein, a new method was validated for synthesizing MXenes from five MAX ceramics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!