Limb-girdle muscular dystrophies (LGMD) are clinically and genetically heterogenous presentations displaying predominantly proximal muscle weakness due to the loss of skeletal muscle fibers. Beta-sarcoglycanopathy (LGMDR4) results from biallelic molecular defects in SGCB and features pediatric onset with limb-girdle involvement, often complicated by respiratory and heart dysfunction. Here we describe a patient who presented at the age of 12 years reporting high creatine kinase levels and onset of cramps after strenuous exercise. Instrumental investigations, including a muscle biopsy, pointed towards a diagnosis of beta-sarcoglycanopathy. NGS panel sequencing identified two variants in the SGCB gene, one of which (c.243+1548T>C) was found to promote the inclusion of a pseudoexon between exons 2 and 3 in the SGCB transcript. Interestingly, we detected the same genotype in a previously reported LGMDR4 patient, deceased more than twenty years ago, who had escaped molecular diagnosis so far. After the delivery of morpholino oligomers targeting the pseudoexon in patient-specific induced pluripotent stem cells, we observed the correction of the physiological splicing and partial restoration of protein levels. Our findings prompt the analysis of the c.243+1548T>C variant in suspected LGMDR4 patients, especially those harbouring monoallelic SGCB variants, and provide a further example of the efficacy of antisense technology for the correction of molecular defects resulting in splicing abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456520PMC
http://dx.doi.org/10.3390/ijms23179817DOI Listing

Publication Analysis

Top Keywords

molecular defects
8
antisense morpholino-based
4
morpholino-based vitro
4
vitro correction
4
correction pseudoexon-generating
4
pseudoexon-generating variant
4
variant gene
4
gene limb-girdle
4
limb-girdle muscular
4
muscular dystrophies
4

Similar Publications

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

This study discusses disseminated intravascular coagulation (DIC) associated with solid cancers and various vascular abnormalities, both of which generally exhibit chronic DIC patterns. Solid cancers are among the most significant underlying diseases that induce DIC. However, the severity, bleeding tendency, and progression of DIC vary considerably depending on the type and stage of the cancer, making generalization difficult.

View Article and Find Full Text PDF

Microbe-mediated synthesis of defect-rich CeO nanoparticles with oxidase-like activity for colorimetric detection of L-penicillamine and glutathione.

Nanoscale

January 2025

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.

To enhance production efficiency, curtail costs, and minimize environmental impact, developing simple and sustainable nanozyme synthesis methods has been the focus of relevant research. In this report, graphite-coated CeO nanoparticles (CeO NPs) with multiple defects (Ce defects, oxygen vacancies and carbon defects) were synthesized the culture filtrate of the extremely radioresistant bacterium R12 ( R12). The as-prepared CeO NPs exhibit remarkable oxidase (OXD)-like activity, efficiently catalyzing the oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form oxTMB, even in the absence of HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!