DNA Holliday junction (HJ) is a four-way stranded DNA intermediate that formed in replication fork regression, homology-dependent repair and mitosis, performing a significant role in genomic stability. Failure to remove HJ can induce an acceptable replication fork stalling and DNA damage in normal cells, leading to a serious chromosomal aberration and even cell death in HJ nuclease-deficient tumor cells. Thus, HJ is becoming an attractive target in cancer therapy. However, the development of HJ-targeting ligand faces great challenges because of flexile cavities on the center of HJs. This review introduces the discovery history of HJ, elucidates the formation and dissociation procedures of HJ in corresponding bio-events, emphasizes the importance of prompt HJ-removing in genome stability, and summarizes recent advances in HJ-based ligand discovery. Our review indicate that target HJ is a promising approach in oncotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456528 | PMC |
http://dx.doi.org/10.3390/ijms23179730 | DOI Listing |
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Medical Research and Experimental Center, Yan'an Medical College of Yan'an University, Yan'an 716000, China.
Objectives: To investigate the role of Holliday cross-recognition protein (HJURP) in tumorigenesis, progression, and immunotherapy responses.
Methods: Bioinformatics approaches were used to analyze the expression level of in various cancers and its association with prognosis, clinical stage, and immune cell infiltration using TCGA, GTEx, SangerBox and TIMER 2.0 databases.
ACS Nano
December 2024
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark.
Multivalency as an interaction principle is widely utilized in nature. It enables specific and strong binding by multiple weak interactions through enhanced avidity and is a core process in immune recognition and cellular signaling, which is also a current concept in drug design. Here, we use the high signals from plasmon-enhanced fluorescence of nanoparticles to extract binding kinetics and dynamics of multivalent interactions on the single-molecule level and in real time.
View Article and Find Full Text PDFFront Genet
November 2024
Department of Respiratory, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
Background: Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer (NSCLC), characterized by poor prognosis and a high mortality rate. Identifying reliable prognostic biomarkers and potential therapeutic targets is crucial for improving patient outcomes.
Methods: We conducted a comprehensive analysis of HJURP expression in LUAD using data from four cohorts: TCGA-LUAD (n = 453), GSE31210 (n = 226), GSE68465 (n = 442), and GSE72094 (n = 386).
Soft Matter
December 2024
Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, China.
bioRxiv
November 2024
William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in following UV treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!