In view of the water pollution issues caused by pathogenic microorganisms and harmful organic contaminants, nontoxic, environmentally friendly, and efficient antimicrobial agents are urgently required. Herein, a nickel-based Keggin polyoxomolybdate [Ni(L)(HL)]H[PMoO] 4HO (, HL = 2-acetylpyrazine thiosemicarbazone) was prepared via a facile hydrothermal method and successfully characterized. Compound exhibited high stability in a wide range of pH values from 4 to 10. demonstrated significant antibacterial activity, with minimum inhibitory concentration (MIC) values in the range of 0.0019-0.2400 µg/mL against four types of bacteria, including (), (), (), and (). Further time-kill studies indicated that killed almost all (99.9%) of and Meanwhile, the possible antibacterial mechanism was explored, and the results indicate that the antibacterial properties of originate from the synergistic effect between [Ni(L)(HL)] and [PMoO]. In addition, presented effective adsorption of basic fuchsin (BF) dyes. The kinetic data fitted a pseudo-second-order kinetic model well, and the maximum adsorption efficiency for the BF dyes (29.81 mg/g) was determined by the data fit of the Freundlich isotherm model. The results show that BF adsorption was dominated by both chemical adsorption and multilayer adsorption. This work provides evidence that has potential to effectively remove dyes and pathogenic bacteria from wastewater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456081 | PMC |
http://dx.doi.org/10.3390/ijms23179651 | DOI Listing |
Sci Rep
January 2025
Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, 1410, Brunei Darussalam.
Sci Rep
January 2025
Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada.
Membrane incompatibility poses significant health risks, including severe complications and potential fatality. Surface modification of membranes has emerged as a pivotal technology in the membrane industry, aiming to improve the hemocompatibility and performance of dialysis membranes by mitigating undesired membrane-protein interactions, which can lead to fouling and subsequent protein adsorption. Affinity energy, defined as the strength of interaction between membranes and human serum proteins, plays a crucial role in assessing membrane-protein interactions.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
The inhibitory potential of an alcoholic extract derived from Canarium strictum leaves (CSL) was evaluated as a corrosion inhibitor for mild steel (MS) in 15% HCl solution. Furthermore, to enhance its inhibition effectiveness, the influence of potassium iodide (KI) was also examined. The corrosion inhibition and adsorption characteristics of CSL were comprehensively analysed through weight loss measurement, electrochemical impedance measurement (EIS), potentiodynamic polarization (PP), UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS).
View Article and Find Full Text PDFNat Commun
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
Artificial photosynthesis of urea from NH and CO seems to remain still essentially unexplored. Herein, three isomorphic three-dimensional covalent organic frameworks with twofold interpenetrated ffc topology are functionalized by benzene, pyrazine, and tetrazine active moieties, respectively. A series of experiment results disclose the gradually enhanced conductivity, light-harvesting capacity, photogenerated carrier separation efficiency, and co-adsorption capacity towards NH and CO in the order of benzene-, pyrazine-, and tetrazine-containing framework.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong, P.R. China.
Pt/α-MoC catalysts exhibit exceptional activity in low-temperature water-gas shift reactions. However, quantitatively identifying and fine-tuning the active sites has remained a significant challenge. In this study, we reveal that fully exposed monolayer Pt nanoclusters on molybdenum carbides demonstrate mass activity that exceeds that of bulk molybdenum carbide catalysts by one to two orders of magnitude at 100-200 °C for low-temperature water-gas shift reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!