Hierarchy of Bioapatites.

Int J Mol Sci

Department of Orthopaedics and Rehabilitation, Medical University of Lublin, K. Jaczewskiego 8, 20-090 Lublin, Poland.

Published: August 2022

Apatites are one of the most intensively studied materials for possible biomedical applications. New perspectives of possible application of apatites correspond with the development of nanomaterials and nanocompounds. Here, an effort to systematize different kinds of human bioapatites forming bones, dentin, and enamel was undertaken. The precursors of bioapatites and hydroxyapatite were also considered. The rigorous consideration of compositions and stoichiometry of bioapatites allowed us to establish an order in their mutual sequence. The chemical reactions describing potential transformations of biomaterials from octacalcium phosphate into hydroxyapatite via all intermediate stages were postulated. Regardless of whether the reactions occur in reality, all apatite biomaterials behave as if they participate in them. To conserve the charge, additional free charges were introduced, with an assumed meaning to be joined with the defects. The distribution of defects was coupled with the values of crystallographic parameters "" and "". The energetic balances of bioapatite transformations were calculated. The apatite biomaterials are surprisingly regular structures with non-integer stoichiometric coefficients. The results presented here will be helpful for the further design and development of nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455617PMC
http://dx.doi.org/10.3390/ijms23179537DOI Listing

Publication Analysis

Top Keywords

development nanomaterials
8
apatite biomaterials
8
hierarchy bioapatites
4
bioapatites apatites
4
apatites intensively
4
intensively studied
4
studied materials
4
materials biomedical
4
biomedical applications
4
applications perspectives
4

Similar Publications

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Liquid-nano-liquid interface-oriented anisotropic encapsulation.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.

View Article and Find Full Text PDF

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution.

Chemistry

January 2025

Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.

NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.

View Article and Find Full Text PDF

Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!