The rapid development of technologies for cultured meat production has led to new challenges for producers regarding appropriate communication with future customers in order to deliver products to a viable market. Communication analysis of social media enables the identification of the key characteristics of the monitored topic, as well as the main areas of communication by individual users based on active digital footprints. This study aimed to identify the key characteristics of cultured meat based on communication analysis of the social network Twitter. Communication analysis was performed based on 36,356 Tweets posted by 4128 individual users. This analysis identified the following main communicated characteristics: clean meat, future meat, and sustainable meat. Latent Dittrich allocation identified five communication topics: (1) clean and sustainable products, (2) comparisons with plant-based protein and the impact on agribusiness, (3) positive environmental aspects, (4) cultured meat as an alternative protein, and (5) the regulation of cultured meat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455233PMC
http://dx.doi.org/10.3390/foods11172695DOI Listing

Publication Analysis

Top Keywords

cultured meat
20
communication analysis
12
social network
8
network twitter
8
analysis social
8
key characteristics
8
individual users
8
meat
7
communication
6
cultured
5

Similar Publications

An overview of recent progress in cultured meat: focusing on technology, quality properties, safety, industrialization and public acceptance.

J Nutr

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Cultured meat technology represents an innovative food production approach that enables the large-scale cultivation of animal cells to obtain muscle, fat, and other tissues, which are then processed into meat products. Compared to traditional meat production methods, cell-cultured meat may significantly reduce energy consumption by 7% to 45%, greenhouse gas emissions by 78% to 96%, land use by 99%, and water use by 82% to 96%. This technology offers several advantages, including a shorter production cycle and enhanced environmental sustainability, resource efficiency, and overall sustainability.

View Article and Find Full Text PDF

3D bioprinting: Advancing the future of food production layer by layer.

Food Chem

January 2025

Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood.

View Article and Find Full Text PDF

Attachment to Meat and Willingness Towards Cultured Alternatives Among Consumers: A Cross-Sectional Study in the UAE.

Nutrients

December 2024

Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

: The escalating global demand for meat, as a sequela of population growth, has led to unsustainable livestock production, resulting in a host of environmental and food security concerns. Various strategies have been explored to mitigate these issues, including the introduction of a novel food product, cultured meat. Cultured meat is not yet commercially available, yet public perceptions are already taking shape.

View Article and Find Full Text PDF

This scoping review aims to understand the cell-based meat production process, including the regulations, potential hazards, and critical points of this production. This review includes studies on cultured meat production processes, health hazards, and regulatory guidelines, excluding those without hazard analysis, incomplete texts, or studies published before 2013. The search was performed in eight electronic databases (MEDLINE, Web of Science, Embase, Cochrane Library, Scopus, LILACS, and Google Scholar) using MeSH terms and adaptations for each database.

View Article and Find Full Text PDF

Cultured meat (CM) is derived from the in vitro myogenesis of muscle satellite (stem) cells (MSCs) and offers a promising alternative protein source. However, the development of a cost-effective media formulation that promotes cell growth has yet to be achieved. In this study, laxogenin (LAX) and 5-alpha-hydroxy-laxogenin (5HLAX) were computationally screened against myostatin (MSTN), a negative regulator of muscle mass, because of their antioxidant properties and dual roles as MSTN inhibitors and enhancers of myogenesis regulatory factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!