In this work, a qualitative study of the phenolic content of leaves (MO), extracted with deep eutectic solvents (DES) based on choline chloride (ChCl) with lactic acid (LA) or glycerol (GLY), was performed by high-resolution mass spectrometry (HPLC-DAD-ESI-MS). The two solvents (DES-LA and DES-GLY) extract similar classes of phenolics, and ten compounds were identified. The antioxidant profile was also studied (TPC, TFC, DPPH, FRAP, ORAC, and ABTS). Both solvents show an efficient extraction of phenolic compounds and high antioxidant capacity was verified for the extracts. However, the DES-Gly have a higher capacity for polyphenolic extraction (TPC led to 38.409 ± 0.095 mg GAE.g and 2.259 ± 0.023 mg QE.g for TFC). Films based on methylcellulose (MC) containing different amounts of DES or MO extracts, acting as plasticizers, were developed and characterized regarding their mechanical, optical, water vapor permeability, and microstructural properties. All films are uniform, clear, and transparent with smooth, homogeneous surfaces. It was found that the presence of more than 10% of MO extract and/or DES provided more flexible films (Eb for MC 2%_DES 20% achieved 4.330 ± 0.27 %, and 8.15 ± 0.39 % for MC 2%_MO 20%) with less mechanical and barrier resistance. The ultimate objective of this study was to provide information that could assist in the development of antimicrobial active methylcellulose films for sliced wheat bread packaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455762PMC
http://dx.doi.org/10.3390/foods11172641DOI Listing

Publication Analysis

Top Keywords

methylcellulose films
8
films
5
phenolic extraction
4
extraction leaves
4
des
4
leaves des
4
des characterization
4
characterization extracts
4
extracts application
4
application methylcellulose
4

Similar Publications

The aim of this study was to develop and optimize polymeric films based on cellulose derivatives-hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), and sodium carboxymethylcellulose (NaCMC)-as well as pullulan, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and glycerol (GLY) as plasticizer incorporating extract for potential use in periodontal and gum disease treatment. Over 80 formulations were fabricated using the solvent-casting method, 6 of which were selected for further investigation based on their mechanical properties, mucoadhesion, and disintegration profiles, including three placebo films (OP1 (PVA/PVP/MC400CP/NaCMC/GLY), OP2 (PVA/PVP/MCA15C/NaCMC/GLY), and OP3 (PVA/PVP/HPMC/NaCMC/GLY)) and three films containing extract (OW1, OW2, and OW3). The films demonstrated uniform structural characteristics, with the formulations containing PVA with a high hydrolysis degree (98-99%) and methylcellulose derivatives showing prolonged dissolution times due to physical cross-linking, while the inclusion of NaCMC reduced dissolution time without compromising mucoadhesiveness.

View Article and Find Full Text PDF

One of the biggest challenges in food packaging is the creation of sustainable and eco-friendly packaging materials to shield foods from ultraviolet (UV) photochemical damage and to preserve the distinctive physical, chemical, and biological characteristics of foods throughout the supply chain. Accordingly, this study focuses on enhancing the UV shielding properties and biological activity of carboxylmethyl cellulose sodium (CMC) through modifications using zinc oxide (ZnO), copper oxide (CuO), and graphene oxide (GO) using the solution casting technique. The hybrid nanocomposites were characterized by fourier-transform infrared (FTIR) spectrophotometer, ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and x-ray diffraction (XRD).

View Article and Find Full Text PDF

The proper encapsulation of liposoluble tea polyphenols (LTP) is expected to better protect oil system. Chitosan hydrochloride-carboxymethyl starch (CHC-CMS) nanoparticles-based Pickering emulsions and hydroxypropyl methylcellulose/sodium citrate (HPMC/SC) microporous film were combined to embed and control-release LTP. With the CHC:CMS ratio varied from 1:0.

View Article and Find Full Text PDF

This study was conducted to develop biodegradable films using a combination of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and purified leaves extract of Astragalus tribuloides (ATE). Various traits of the films, including their morphology description, thermal behavior, tensile/elongation properties and physical characteristics were examined. The scanning electron microscope (SEM) photographs showed smooth surface with small amounts of ATE, but rougher with higher concentrations of 1.

View Article and Find Full Text PDF

Chitosan-hydroxypropyl methylcellulose and sodium alginate bilayer edible films for chestnut preservation.

Food Chem

February 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China. Electronic address:

To address the challenge of preserving fresh chestnuts, chitosan (CS), hydroxypropyl methylcellulose (HPMC), nisin (N), and sodium alginate (SA) were utilized in the preparation of a bilayer edible film named CS-HPMC-N/SA, which was compared to the monolayer films CS-HPMC and CS-HPMC-N. In comparison to the CS-HPMC film, the CS-HPMC-N and CS-HPMC-N/SA films exhibited increased water vapor permeability (WVP), oxygen permeability, and thickness, while transparency, tensile strength (TS), and elongation at break (EAB) were reduced. The bilayer film CS-HPMC-N/SA showed higher WVP, transparency, thickness, and EAB, but lower TS than the monolayer film CS-HPMC-N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!