A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel Probiotic/Bacterial Cellulose Biocatalyst for the Development of Functional Dairy Beverage. | LitMetric

The development of innovative functional products with potential health benefits, under the concept of bio-economy, is flourishing. This study undertook an evaluation of non-dairy lactobacilli Lactiplantibacillus pentosus B329 and Lactiplantibacillus plantarum 820 as “ready to use” starter cultures. Lactic acid bacteria (LAB) cultures were evaluated for their fermentation efficiency, before and after freeze-drying, using cheese whey (CW) as a fermentation substrate and subsequent immobilization on bacteria cellulose (BC) to produce a novel biocatalyst. The biocatalyst was applied in functional sour milk production and compared with free cells via the assessment of physicochemical and microbiological properties and sensory evaluation. Evidently, LAB strains exhibited high fermentative activity before and after freeze-drying. Results of a 5-month storage stability test showed that viability was 19% enhanced by immobilization on BC, supporting the concept of “ready to use” cultures for the production of fermented beverages. Likewise, sour milk produced by the BC biocatalyst presented higher organoleptic scores, compared to the free cells case, whereas immobilization on BC enhanced probiotic viability during post-fermentation storage (4 °C, 28 days). The obtained high viability (>107 log cfu/g) demonstrated the efficacy of the proposed bioprocess for the production of functional/probiotic-rich beverages. Ultimately, this work presents a consolidated scheme that includes the advantages and the cooperative effect of probiotic LAB strains combined with a functional biopolymer (BC) towards the formulation of novel functional products that coincide with the pillars of food systems sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455237PMC
http://dx.doi.org/10.3390/foods11172586DOI Listing

Publication Analysis

Top Keywords

functional products
8
“ready use”
8
sour milk
8
compared free
8
free cells
8
lab strains
8
functional
5
novel probiotic/bacterial
4
probiotic/bacterial cellulose
4
biocatalyst
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!