Delayed neuropsychiatric sequelae (DNS), which are related to neuropsychiatric symptoms and severe sequelae, occur within a few days of recovery from acute poisoning. They may involve a slowly progressing demyelinating white matter lesion caused by carbon monoxide cytotoxicity; moreover, the involvement of immune mechanisms has been reported. However, there remains no established treatment or therapeutic gain factors. A 29-year-old man with DNS who experienced carbon monoxide poisoning underwent corticosteroid therapy with concomitant measurements of cerebrospinal fluid levels of MBP, IL-6, and pNF-H. Treatment led to an improvement in symptoms and lesions on magnetic resonance imaging. Corticosteroid therapy and monitoring can be used to treat and monitor DNS.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0028-3886.355093DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
12
cerebrospinal fluid
8
monoxide poisoning
8
corticosteroid therapy
8
fluid biomarkers
4
biomarkers monitoring
4
monitoring delayed
4
delayed neurologic
4
neurologic sequelae
4
sequelae carbon
4

Similar Publications

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

Batch and semi-continuous fermentation with Parageobacillus thermoglucosidasius DSM 6285 for H production.

Biotechnol Biofuels Bioprod

January 2025

Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.

Background: Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P.

View Article and Find Full Text PDF

Background: This study aims to compare Lung Ultrasound (LUS) findings with High-Resolution Computerized Tomography (HRCT) and Pulmonary Function Tests (PFTs) to detect the severity of lung involvement in patients with Usual Interstitial Pneumonia (UIP) and Non-Specific Interstitial Pneumonia (NSIP).

Methods: A cross-sectional study was conducted on 35 UIP and 30 NSIP patients at a referral hospital. All patients underwent LUS, HRCT, and PFT.

View Article and Find Full Text PDF

Automated tools for quantification of idiopathic pulmonary fibrosis (IPF) can aid in ensuring reproducibility, however their complexity and costs can differ substantially. In this retrospective study, two automated tools were compared in 45 patients with biopsy proven (12/45) and imaging-based (33/45) IPF diagnosis (mean age 74 ± 9 years, 37 male) for quantification of pulmonary fibrosis in CT. First, a tool that identifies multiple characteristic lung texture features was applied to measure multi-texture fibrotic lung (MTFL) by combining the amount of ground glass, reticulation, and honeycombing.

View Article and Find Full Text PDF

Sequential catalysis enables efficient pyrolysis of food waste for syngas production.

Bioresour Technol

January 2025

Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong. Electronic address:

Thermochemical conversion technologies are emerging as one of the most promising approaches to tackle food waste crisis. However, the existing techniques confront significant challenges in terms of syngas selectivity and catalyst stability. This study introduced a cost-effective Joule heating approach utilizing sequential catalysts composed of treated stainless steel (SS) and biochar to optimize syngas production from food waste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!