Mitochondria play a crucial part in the cell's ability to adapt to the changing microenvironments and their dysfunction is associated with an extensive array of illnesses, including cancer. Mitochondrial dysfunction has been identified as a potential therapeutic target for cancer therapy. The objective of this article is to give an in-depth analysis of cancer treatment that targets the mitochondrial genome at the molecular level. Recent studies provide insights into nanomedicine techniques and theranostic nanomedicine for mitochondrial targeting. It also provides conceptual information on mitochondrial biomarkers for cancer treatment. Major drawbacks and challenges involved in mitochondrial targeting for advanced cancer therapy have also been discussed. There is a lot of evidence and reason to support using nanomedicine to focus on mitochondrial function. The development of a delivery system with increased selectivity and effectiveness is a prerequisite for a theranostic approach to cancer treatment. If given in large amounts, several new cancer-fighting medicines have been created that are toxic to healthy cells as well. For effective therapy, a new drug must be developed rather than an old one. When it comes to mitochondrial targeting therapy, theranostic techniques offer valuable insight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113451 | DOI Listing |
J Inflamm Res
January 2025
Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China.
Chronic liver disease ranks as the 11th leading cause of death worldwide, while hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality, representing a substantial risk to public health. Over the past few decades, the global landscape of chronic liver diseases, including hepatitis, metabolic dysfunction-associated steatotic liver disease (MASLD), liver fibrosis, and HCC, has undergone substantial changes. Copper, a vital trace element for human health, is predominantly regulated by the liver.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, North Dongmen Road, Luohu District, Shenzhen, 518020 Guangdong China.
This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Internal Medicine-II, Paracelsus Medical University Salzburg, Salzburg 5020, Austria.
Increasing evidence of the significant clinical value of protection against ischemia/reperfusion injury has contributed to the realization of the independent importance of this approach in improving prognosis and reducing cardiovascular mortality. Extracellular vesicles (EVs) derived by adipose mesenchymal stem cells may mediate the paracrine effects of stem cells and provide regenerative and anti-inflammatory properties, which are enhanced by γ-aminobutyric acid. The protective effects on cardiac myocytes may result from the EV embarked by miR-21-5p, which is a target for thioredoxin-interacting protein, regulating the formation of thioredoxin-interacting protein-thioredoxin complexes and subsequently enhancing the antioxidant activity of thioredoxin.
View Article and Find Full Text PDFMater Horiz
January 2025
Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
Enzyme-instructed self-assembly (EISA) is a promising approach to anti-cancer therapeutics due to its precise targeting and unique cell death mechanism. In this study, we introduce a small molecule, DN6, which undergoes nitroreductase (NTR)-responsive liquid-liquid phase separation (LLPS) followed by a liquid-to-solid phase transition (LST) through a gel-like intermediate state, resulting in the formation of nanoaggregates with spatiotemporal control. The reduced form of DN6 (DN6R), owing to its aggregation-induced emission (AIE) and mitochondria-targeting capabilities, has been employed for organelle-specific imaging of tumor hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!