Glioblastoma (GBM) is the most prevalent type of adult primary brain tumor and chemotherapy of GBM was limited by drug-resistance. Fraxinellone is a tetrahydro-benzofuranone derivative with various pharmacological activities. However, the pharmacological effects of fraxinellone on GBM remains largely unknown. Here, we found that fraxinellone inhibited the proliferation and growth of GBM cells in a dose-dependent manner in vitro. Subsequently, we found that fraxinellone suppressed the migration and induced apoptosis of GBM cells in vitro. Using western blot and immunostaining, we further found that fraxinellone downregulated the expressions of sirtuin 3 (SIRT3), and superoxide dismutase 2 (SOD2), a downstream of SIRT3 in GBM cells. Meanwhile, reactive oxygen species (ROS) were increased in these fraxinellone-treated GBM cells. Interestingly, overexpression of SIRT3 (SIRT3-OE) indeed partially restored the inhibition of both cell proliferation and migration of GBM cells induced by fraxinellone. Finally, we found that fraxinellone could inhibit the growth of GBM in xenograft model through the inactivation of SIRT3 signaling pathway. Taken together, these results suggest that fraxinellone suppressed the growth and migration of GBM cells by downregulating SIRT3 signaling in vitro, and inhibited the tumorigenesis of GBMs in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113416 | DOI Listing |
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany.
Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.
View Article and Find Full Text PDFCell Rep
January 2025
The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
Background: Both intrinsic renal cells and immune cells contribute to driving renal inflammation and damage. However, the respective roles of intrinsic renal cells and immune cells in crescentic glomerulonephritis, and the key molecular factors driving pathogenesis are still unclear.
Methods: The roles of intrinsic renal cells and renal infiltrating immune cells in crescent formation were explored using renal transplantation after experimental anti-GBM disease induction in 129x1/svJ and C57BL/6J mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!