Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Metabolic syndrome (MetS) is a common metatoblic disorder that leads to various adverse health outcomes such as diabetes and cardiovascular diseases (CVDs). Recent studies suggested that MetS-associated gut dysbiosis could exacerbate MetS related diseases. Green tea, a popular beverage rich in polyphenols, has showed antioxidant and anti-inflammatory effects in treating MetS through gut modulation.
Objectives: This study aimed to understand the impact of green tea extract (GTE) on the composition and metabolism of gut microbiota from people with MetS.
Methods: We utilized an in-vitro human colonic model (HCM) to specifically investigate the host-free interactions between GTE and gut microbiota of MetS adults. Fresh fecal samples donated by three adults with MetS were used as gut microbe inoculum in our HCM system. 16S ribosomal RNA sequencing and liquid-chromatography mass spectrometry (LC/MS) combined with QIIME 2, Compound Discoverer 3.1 and MetaboAnalyst 4.0 based data analyses were performed to show the regulating effects of GTE treatment on gut microbial composition and their metabolism.
Results: Our data suggested that GTE treatment in HCM system modified composition of MetS gut microbiota at genus level and led to significant microbiota metabolic profile change. Bioinformatics analysis showed relative abundance of Escherichia and Klebsiella was commonly increased while Bacteroides, Citrobacter, and Clostridium were significantly reduced. All free fatty acids detected were significantly increased in different colon sections. Lipopolysaccharide biosynthesis, methane metabolism, pentose phosphate pathway, purine metabolism, and tyrosine metabolism were regulated by GTE in MetS gut microbiota. In addition, we identified significant associations between altered microbes and microbial metabolites.
Conclusions: Overall, our study revealed the impact of GTE treatment on gut microbiota composition and metabolism changes in MetS microbiota in vitro, which may provide information for further mechanistic investigation of GTE in modulating gut dysbiosis in MetS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324538 | PMC |
http://dx.doi.org/10.1016/j.foodres.2022.111762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!