This work aimed to evaluate the performance of co-cultivation of potential probiotic yeast and lactic acid bacteria (LAB) in producing plant-based fermented beverages. The co-culture comprised LAB Lactiplantibacillus plantarum CCMA0743 with the yeasts Pichia kluyveri CCMA 0615, Pichia guilliermondii CCMA 1753 and Debaryomyces hansenii CCMA 1761 separately. The plant substrate was 75 g oat, 175 g sunflower seeds, and 75 g almonds. The viability of microorganisms in the plant-based matrix was evaluated during fermentation, storage at 4 °C, and under simulated gastrointestinal tract (GIT) conditions. Chemical analysis, antioxidant activity, and sensory profile of the beverages were also determined. The three yeasts and the LAB showed counts greater than 6.0 log CFU/mL after fermentation, and the plant-based matrix protected the yeasts during simulated digestion. P. kluyveri and D. hansenii showed higher survival than P. guilliermondii and L. plantarum after exposure to simulated GIT conditions. The pH of the plant-based matrix reduced from approximately 7 to 3.8. Lactic acid was the main organic acid produced during fermentation. In addition, 113 volatile compounds were detected by gas chromatography-mass spectrometry (GC-MS), including alcohols, aldehydes, alkanes, alkenes, acids, ester, ether, ketones, phenol, and amides. The beverage sensory profile varied with the co-culture. The co-culture D. hansenii and L. plantarum showed higher antioxidant activity than the other co-culture tested, and the homogeneous texture attribute characterized the beverage produced with this combination. Results show the suitability of tested co-cultures to produce a plant-based fermented beverage and indicate more significant potential for D. hansenii and L. plantarum co-culture as a starter for its functionalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111697 | DOI Listing |
Food Res Int
February 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Recently, there has been a growing demand for plant-based beverages that meet nutritional and health needs and have an appealing taste. This study investigated the impact of fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 on the nutritional quality and aroma compound profile of a sea buckthorn-based cereal beverage. The mixed starter fermented samples, specifically S-APTD (SBCB inoculated with A.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy.
Periweissella beninensis LMG 25373, belonging to the recently established Periweissella genus, exhibits unique motility and high adhesion capabilities, indicating significant probiotic potential, including resilience under simulated gastrointestinal conditions. This study demonstrates for the first time that P. beninensis LMG 25373^T produces a dextran-type exopolysaccharide (EPS) with a distinctive high degree of branching (approximately 71 % of α-(1 → 6)-linkages and 29 % α-(1 → 3)-linkages).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Science and Technology, Örebro University, 701 82 Örebro, Sweden. Electronic address:
Dietary fibers (DF) from plant-based foods promote health benefits through their physicochemical properties and fermentation by the gut microbiota, often studied in relation to changes in gut microbiota profile and production of gut microbiota-derived metabolites. Here, we characterized structural motifs (i.e.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea.
Flavor and taste are critical factors influencing consumer attraction for meat, shaping preferences and commercial demand. This review examines conventional and novel approaches to flavor and taste creation in the meat business, highlighting ways that improve sensory profiles and meet consumer demands. Conventional methods, such as aging and marination, are analyzed in conjunction with new technologies, including enzymatic treatment, fermentation, genetic treatments to alter texture and enhance umami.
View Article and Find Full Text PDFA gut microbiome-targeted diet can potentially mitigate chronic diseases like malnutrition. In a prospective 12-week intervention trial, we evaluated the effects of six different plant-based fermented pickles (∼50g/day) on clinical, inflammatory, and gut-microbiome parameters in women (n=230) in a rural setting with a high prevalence of undernutrition. Blood was collected at two, whereas stool was collected at three timepoints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!