Objectives: Polymyxins are antibacterial polypeptides used as "last resort" therapy option for multidrug-resistant Gram-negative bacteria. The expansion of polymyxin-resistant infections has inspired development of novel polymyxin derivatives, and deacylation is one of the critical steps in generating those antibiotics. Deacylase from Actinoplanes utahensis hydrolyze the acyl moieties of echinocandins, and also efficiently deacylates daptomycin, ramoplanin and other important antibiotics. Here, deacylase was studied considering its potential usefulness in deacylating polymyxin B1.

Results: All the six recombinant strains containing the deacylase gene catalyzed hydrolysis of polymyxin B1, yielding cyclic heptapeptides. The efficiency of recombinant S. albus (SAL701) was higher than that of the others, and deacylation was the most efficient at 40 °C in 0.2 M Tris buffer (pH 8.0) with 0.2 M Mg. The optimal substrate concentration of SAL701 was increased from 2.0 to 6.0 g/L. SAL701 was highly thermostable, showing no loss of activity at 50 °C for 12 h, and the mycelia could be recycled at least three times without loss of catalytic activity. SAL701 could not deacylate β-lactam substrate such as penicillin G and cephalosporin C. Deacylase catalyzes the amide bond 1 closest to the nucleus of polymyxin B1 rather than the other bond, suggesting that it has high catalytic site specificity. Homology modeling and the docking results implied that Thr190 in deacylase could facilitate hydrolysis with high regioselectivity.

Conclusions: These results show that SAL701 is effective in increasing the cyclic heptapeptide moiety of polymyxin B1. These properties of the biocatalyst may enable its development in the industrial production of polymyxins antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-022-03290-7DOI Listing

Publication Analysis

Top Keywords

antibiotics deacylase
8
polymyxin
6
deacylase
5
sal701
5
efficient side-chain
4
side-chain deacylation
4
deacylation polymyxin
4
polymyxin recombinant
4
recombinant streptomyces
4
streptomyces strains
4

Similar Publications

A new member of the family Flavobacteriaceae (termed Hal144) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144 16S rRNA gene sequence revealed similarities from 94.

View Article and Find Full Text PDF

Assays and Utilization of Enzymes Involved in Glycolipid Metabolism in Bacteria and Fungi.

Methods Mol Biol

January 2023

Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.

Microbial glycosphingolipid (GSL)-degrading enzymes with unique specificity are useful tools for GSL research. On the other hand, some microbial glycolipids, not only GSLs but also steryl glucosides, are closely related to pathogenicity, and, thus, the metabolism of microbial glycolipids is attracting attention as a target for antibiotics. This chapter describes the assays and utilization of microbial enzymes useful for glycolipid research and those involved in pathogenicity or host immune reactions.

View Article and Find Full Text PDF

Objectives: Polymyxins are antibacterial polypeptides used as "last resort" therapy option for multidrug-resistant Gram-negative bacteria. The expansion of polymyxin-resistant infections has inspired development of novel polymyxin derivatives, and deacylation is one of the critical steps in generating those antibiotics. Deacylase from Actinoplanes utahensis hydrolyze the acyl moieties of echinocandins, and also efficiently deacylates daptomycin, ramoplanin and other important antibiotics.

View Article and Find Full Text PDF

When Streptomyces violaceoruber grows together with Streptomyces sp. MG7-G1, it reacts with strongly induced droplet production on its aerial mycelium. Initially the metabolite profile of droplets from S.

View Article and Find Full Text PDF

Enhancing Catalytic Efficiency of an Actinoplanes utahensis Echinocandin B Deacylase through Random Mutagenesis and Site-Directed Mutagenesis.

Appl Biochem Biotechnol

April 2020

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.

Echinocandin B deacylase (EBDA), from Actinoplanes utahensis ZJB-08196, is capable of cleaving the linoleoyl group from echinocandin B (ECB), forming the echinocandin B nucleus (ECBN), which is a key precursor of semisynthetic antifungal antibiotics. In the present study, molecular evolution of AuEBDA by random mutagenesis combined with site-directed mutagenesis (SDM) and screening was performed. Random mutagenesis on the wild-type (WT) AuEBDA generated two beneficial substitutions of G287Q, R527V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!