Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rcpeng.2022.08.001 | DOI Listing |
J Trauma Nurs
January 2025
Author Affiliations: Penn Medicine, Department of Advanced Practice & Trauma Surgical Critical Care (Dr Saucier), Biostatistics, Hearing, & Speech, Ingram Cancer Center, Vanderbilt University School of Medicine (Dr Dietrich), School of Nursing, Vanderbilt University (Drs Maxwell and Minnick), Nashville, Tennessee; David E. Longnecker Associate Professor of Anesthesiology and Critical Care (Dr Lane-Fall), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Surgical Service Line (Dr Messing), Inova Health System, Falls Church, Virginia.
Background: Patient transitions in critical care require coordination across provider roles and rely on the quality of providers' actions to ensure safety. Studying the behavior of providers who transition patients in critical care may guide future interventions that ultimately improve patient safety in this setting.
Objective: To establish the feasibility of using the Theory of Planned Behavior in a trauma environment and to describe provider behavior elements during trauma patient transfers (de-escalations) to non-critical care units.
PLoS One
January 2025
College of Arts, Anhui Xinhua University, Hefei, China.
To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. The model comprehensively utilizes the image restoration and style transfer capabilities of the attention mechanism and the cycle consistency adversarial network, and introduces an improved attention module, which can adaptively highlight the key visual elements in the illustration, thereby maintaining artistic integrity during the style transfer process. Through a series of quantitative and qualitative experiments, high-quality style transfer is achieved, especially while retaining the original features of the illustration.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America.
This paper describes and validates an algorithm to solve optimal control problems for agent-based models (ABMs). For a given ABM and a given optimal control problem, the algorithm derives a surrogate model, typically lower-dimensional, in the form of a system of ordinary differential equations (ODEs), solves the control problem for the surrogate model, and then transfers it back to the original ABM. It applies to quite general ABMs and offers several options for the ODE structure, depending on what information about the ABM is to be used.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
Background: Aeromedical transfer of patients with ischemic stroke to access hyperacute stroke treatment is becoming increasingly common. Little is known about how rapid changes of altitude and atmospheric pressure can impact cerebral perfusion and ischemic burden. In patients with ischemic stroke, there is a theoretical possibility that this physiologic response of hypoxia-driven hyperventilation at higher altitude can lead to a relative drop in PaCO2.
View Article and Find Full Text PDFPLoS One
January 2025
Chemistry and Biochemistry, University of St. Thomas, Houston, TX, United States of America.
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality globally, with oxidative stress playing a pivotal role in its progression. Free radicals produced via oxidative stress contribute to lipid peroxidation, leading to subsequent inflammatory responses, which then result in atherosclerosis. Antioxidants inhibit these harmful effects through their reducing ability, thereby preventing oxidative damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!