Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the results of constant-potential molecular dynamics simulations of the double layer interface between molten 2LiF-BeF (FLiBe) and 23LiF-6NaF-21KF (FLiNaK) fluoride mixtures and idealized solid electrodes. Employing methods similar to those used in studies of chloride double layers, we compute the structure and differential capacitance of molten fluoride electric double layers as a function of applied voltage. The role of molten salt structure is probed through comparisons between FLiBe and FLiNaK, which serve as models for strong and weak associate-forming salts, respectively. In FLiBe, screening involves changes in Be-F-Be angles and alignment of the oligomers parallel to the electrode, while in FLiNaK, the electric field is screened mainly by rearrangement of individual ions, predominantly the polarizable potassium cation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0097697 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!