Download full-text PDF

Source

Publication Analysis

Top Keywords

[visualization diatoms
4
diatoms scanning
4
scanning electron
4
electron microscope]
4
[visualization
1
scanning
1
electron
1
microscope]
1

Similar Publications

Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date.

View Article and Find Full Text PDF

Background: Diatoms are microalgae with finely ornamented microscopic silica shells. Their taxonomic identification by light microscopy is routinely used as part of community ecological research as well as ecological status assessment of aquatic ecosystems, and a need for digitalization of these methods has long been recognized. Alongside their high taxonomic and morphological diversity, several other factors make diatoms highly challenging for deep learning-based identification using light microscopy images.

View Article and Find Full Text PDF

Diatom-derived extracellular polymeric substances form eco-corona and enhance stability of silver nanoparticles.

Environ Sci Nano

October 2024

Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environemntal Biogeochemistry and Ecotoxicology, University of Geneva Bvd Carl-Vogt 66 1211-Geneva Switzerland

Article Synopsis
  • Silver nanoparticles (nAg) are commonly used in various applications but their behavior in aquatic environments is influenced by factors like surrounding conditions and extracellular polymeric substances (EPS) from organisms such as diatoms.
  • This study focuses on how EPS from diatoms interact with citrate-coated nAg, affecting their surface properties, stability, and dissolution in freshwater over short and long-term periods.
  • Results indicate that EPS enhance nAg’s stability and reduce their dissolution by forming a protective eco-corona, largely composed of proteins and polysaccharides, which alters how nAg aggregates in water.
View Article and Find Full Text PDF

Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process.

View Article and Find Full Text PDF

Organisms are able to control material patterning down to the nanometer scale. This is exemplified by the intricate geometrical patterns of the silica cell wall of diatoms, a group of unicellular algae. Theoretical and modeling studies propose putative physical and chemical mechanisms to explain morphogenesis of diatom silica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!