Trace determination of multiple hydrophilic cyanotoxins in freshwater by off- and on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry.

Sci Total Environ

Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.

Published: December 2022

Hydrophilic cyanotoxins (HCTs), such as paralytic shellfish toxins (PSTs), anatoxin-a (ATX-a), and cylindrospermopsin (CYN) are highly toxic and toxin-producing algae are widely distributed worldwide. However, HCTs, especially PSTs, are rarely reported in freshwater due to analytical limitations. This may result in an underestimation of the ecological risks and health risks. This study developed a new method to detect ATX-a, CYN, and thirteen common PSTs in freshwater simultaneously by using off-line solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The limits of detection (LODs) of all targets were lower than 0.05 μg/L, which could meet the regulatory requirements for monitoring of HCTs in drinking water in different countries and regions. To improve the detection sensitivities for trace PSTs, a method based on off-line SPE and on-line SPE-LC-MS/MS was established with LOD around 0.001 μg/L. GTX1&4, GTX2&3, and GTX5 were detected in freshwater in China for the first time, highlighting that overall communities are facing potential risks of exposure to various PSTs in China. High concentrations of ATX-a and CYN were also detected in freshwater from Northern China. The proposed method helps to understand the pollution status of HCT in water bodies, especially during the non-algal bloom period.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158545DOI Listing

Publication Analysis

Top Keywords

hydrophilic cyanotoxins
8
solid phase
8
phase extraction
8
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8
atx-a cyn
8
detected freshwater
8
freshwater
5
psts
5

Similar Publications

Determination of microcystins and nodularins in ambient freshwater and seawater by liquid chromatography-mass spectrometry including toxin screening and identification.

Anal Chim Acta

January 2025

HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA.

Background: Microcystins (MCs) and nodularins (NODs) produced by cyanobacteria occur in ambient freshwaters and across the freshwater-marine continuum, and pose health threats through drinking and recreational waters, as well as food resources. Approximately 300 MC and NOD toxins have been published, but less than 15 of them are commercially available as toxin standards. Our aim herein was to rapidly identify and quantify all toxin congeners, including those without standards, in water samples even at low abundance by reversed-phase solid phase extraction (SPE)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) to provide insights into toxin levels and potential toxicity.

View Article and Find Full Text PDF

Multi-class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography-mass spectrometry.

J Chromatogr A

December 2024

Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada.

Cyanobacteria produce diverse classes of toxins including microcystins, nodularins, anatoxins, cylindrospermopsins and saxitoxins, encompassing a range of chemical properties and mechanisms of toxicity. Comprehensive analysis of these toxins in cyanobacterial, environmental and biological samples generally requires multiple methods of extraction and analysis. In this work, a method was developed for the major classes of cyanotoxins, which comprised of a three-step liquid-solid extraction method using 75 % CHCN with 0.

View Article and Find Full Text PDF

Surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes for pipette tip solid-phase extraction of microcystins in water.

J Chromatogr A

November 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China. Electronic address:

The occurrence of microcystins (MCs) during harmful algal blooms (HABs) represents a major threat to freshwater environments. In this work, a novel surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes (PCSs) was prepared for the enrichment of MCs. The copolymerization of bifunctional amphiphilic monomers, 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-benzylquininium chloride (BQN), with the cross-linker methacryl substituted polyhedral oligomeric silsesquioxane (POSS) was achieved in an ionic liquid-based porogenic medium.

View Article and Find Full Text PDF

Photodegradation of MC-LR using a novel Au-decorated Ni metal-organic framework (Au/Ni-MOF).

Chemosphere

December 2023

Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, United States. Electronic address:

Microcystins (MCs) are toxins produced by cyanobacteria commonly found in harmful algal blooms (HAB) occurring in many surface waters. Conventional methods for removing MC-LR such as membrane filtration and activated carbon are only phase change removal methods and are often expensive in operation and maintenance. It is urgent to develop a rapid, easy-to-use, and cost-effective method for the degradation of MC-LR.

View Article and Find Full Text PDF

Microplastics and per- and polyfluoroalkyl substances (PFAS) both represent persistent groups of environmental contaminants that have been associated with human health risks. Microcystin toxins are produced and stored in the cells of cyanobacteria and may be released into sources of drinking water. Recent concerns have emerged regarding the ability of microplastics to adsorb a range of organic contaminants, including PFAS and microcystins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!