A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NLRP3 leucine-rich repeats control induced and spontaneous inflammasome activation in cryopyrin-associated periodic syndrome. | LitMetric

Background: The cryopyrin-associated periodic syndromes (CAPS) comprise a group of rare autoinflammatory diseases caused by gain-of-function mutations in the NLRP3 gene. NLRP3 contains a leucine-rich repeats (LRR) domain with a highly conserved exonic organization that is subjected to extensive alternative splicing. Aberrant NLRP3 inflammasome assembly in CAPS causes chronic inflammation; however, the mechanisms regulating inflammasome function remain unclear.

Objective: We aimed to elucidate the mechanisms regulating NLRP3-mediated autoinflammation in human disease, characterizing the role of LRR in inflammasome activation.

Methods: We analyzed sequence read archive data to characterize the pattern of NLRP3 splicing in human monocytes and investigated the role of each LRR-coding exon in inflammasome regulation in genetically modified U937 cells representing CAPS and healthy conditions.

Results: We detected a range of NLRP3 splice variants in human primary cells and monocytic cell lines, including 2 yet-undescribed splice variants. We observe that lipopolysaccharides affect the abundance of certain splice variants, suggesting that they may regulate NLRP3 activation by affecting alternative splicing. We showed that exons 4, 5, 7, and 9 are essential for inflammasome function, both in the context of wild-type NLRP3 activation by the agonist molecule nigericin and in a model of CAPS-mediated NLRP3 inflammasome assembly. Moreover, the SGT1-NLRP3 interaction is decreased in nonfunctional variants, suggesting that alternative splicing may regulate the recruitment of proteins that facilitate inflammasome assembly.

Conclusion: These findings demonstrate the contribution of the LRR domain in inflammasome function and suggest that navigating LRR exon usage within NLRP3 is sufficient to dampen inflammasome assembly in CAPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2022.08.019DOI Listing

Publication Analysis

Top Keywords

alternative splicing
12
inflammasome assembly
12
inflammasome function
12
splice variants
12
nlrp3
10
inflammasome
10
nlrp3 leucine-rich
8
leucine-rich repeats
8
cryopyrin-associated periodic
8
lrr domain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!