We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6633/ac906c | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.
The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:
Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316, Oslo, Norway.
In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!