Blood -cerebrospinal fluid-barrier (BCB) disruption in tuberculous meningitis (TBM) may be mediated by inflammatory cytokines, and may determine clinico-radiological severity and outcome. We report BCB permeability in TBM and its relationship with inflammatory cytokines (TNF-α, IL-1β and IL-6), clinical severity, MRI changes and outcome. 55 TBM patients with a median age of 26 years were included. Their clinical, cerebrospinal fluid (CSF) and MRI findings were noted. The severity of meningitis was graded into stages I to III. Cranial MRI was done, and the presence of exudates, granuloma, hydrocephalus and infarctions was noted. BCB permeability was assessed by a ratio of CSF albumin to serum albumin (Q). The concentration of TNF-α, IL-1β and IL-6 in CSF were measured by cytokine bead array. The Q in the patients was more than the mean + 2.5 SD of controls. In TBM, Q correlated with TNF- α (r = 0.47; p = 0.01), CSF cells (r = 0.29; p = 0.02) and exudate on MRI (0.18 ± 0.009 Vs 0.13 ± 0.008; p = 0.04). There was however no association of Q with demographic variables, stage, tuberculoma, infarction and hydrocephalus. At 6 months, 11(20%) died, 10(18.2%) had poor and 34(61.8%) had a good recovery. BCB permeability in TBM correlated with TNF-α, CSF pleocytosis and exudates but not with severity of meningitis and outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneuroim.2022.577954 | DOI Listing |
Hypertens Pregnancy
December 2025
Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.
Background: Preeclampsia (PE) is characterized as de novo hypertension (HTN) with end-organ damage, especially in the brain. PE is hypothesized to be caused by placental ischemia. PE affects ~5-8% of USA pregnancies and increases the risk for HTN and cerebrovascular diseases (CVD) later in life.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt.
Background: Liver transplantation (LT) is a critical intervention for individuals with end-stage liver disease; yet, post-transplant problems, especially infections, graft rejection, and chronic liver disease, are often linked to systemic inflammation. Cytokines, small signaling molecules, significantly influence immune responses during and post-liver transplantation. Nonetheless, the intricate relationships among cytokines, immune responses, and the gut microbiota, especially gut dysbiosis, are still inadequately comprehended.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
Sci Rep
January 2025
School of Health Preservation and Rehabilitation, Chengdu University of TCM, Shierqiao Road, Chengdu, 610075, Sichuan, People's Republic of China.
Despite the established link between chronic high salt diet (HSD) and an increase in gut inflammation, the effect of HSD on the integrity of the intestinal barrier remains understudied. The present study aims to investigate the impact of HSD on the intestinal barrier in rats, encompassing its mechanical, mucous, and immune components. Expression levels of intestinal tight junction proteins and mucin-2 (MUC2) in SD rats were analyzed using immunofluorescence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway.
Restoration of the intestinal epithelial barrier is crucial for achieving mucosal healing, the therapeutic goal for inflammatory bowel disease (IBD). During homeostasis, epithelial renewal is maintained by crypt stem cells and progenitors that cease to divide as they differentiate into mature colonocytes. Inflammation is a major effector of mucosal damage in IBD and has been found to affect epithelial stemness, regeneration and cellular functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!