Catechol and/or pyrogallol groups are recognized as crucial for the formation of polyphenol coatings on various substrates. Meanwhile, studies on polyphenolic molecules that do not contain such groups are relatively rare. The key molecule in turmeric-based universal (i.e., substrate-independent) coatings is curcumin, which contains no catechol or pyrogallol groups. As chemically reactive hydroxyl groups would remain after curcumin coating, it is hypothesized that curcumin coating can serve as a reactive layer for controlling interfacial properties. In this study, a curcumin-based surface modification method is developed to graft polymer brushes from various substrates, including titanium dioxide, gold, glass, stainless steel, and nylon. α-Bromoisobutyryl bromide, a polymerization initiator, is introduced to the curcumin-coated substrates via esterification; subsequently, poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) is grafted from the surfaces. Compared to the control surfaces, poly(OEGMA)-grafted surfaces significantly suppress bacterial adhesion by up to 99.4%, demonstrating their antibacterial properties. Considering its facile and versatile surface modification, curcumin-based polymer grafting can be an efficient method for controlling the chemical/physical properties of surfaces in a substrate-independent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202200310DOI Listing

Publication Analysis

Top Keywords

pyrogallol groups
8
curcumin coating
8
surface modification
8
curcumin-based universal
4
universal grafting
4
grafting polyoegma
4
polyoegma brushes
4
brushes antibacterial
4
antibacterial applications
4
applications catechol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!