Healthcare uses state-of-the-art technologies (such as wearable devices, blood glucose meters, electrocardiographs), which results in the generation of large amounts of data. Healthcare data is essential in patient management and plays a critical role in transforming healthcare services, medical scheme design, and scientific research. Missing data is a challenging problem in healthcare due to system failure and untimely filing, resulting in inaccurate diagnosis treatment anomalies. Therefore, there is a need to accurately predict and impute missing data as only complete data could provide a scientific and comprehensive basis for patients, doctors, and researchers. However, traditional approaches in this paradigm often neglect the effect of the time factor on forecasting results. This article proposes a time-aware missing healthcare data prediction approach based on the autoregressive integrated moving average (ARIMA) model. We combine a truncated singular value decomposition (SVD) with the ARIMA model to improve the prediction efficiency of the ARIMA model and remove data redundancy and noise. Through the improved ARIMA model, our proposed approach (named MHDP ) can capture underlying pattern of healthcare data changes with time and accurately predict missing data. The experiments conducted on the WISDM dataset show that MHDP approach is effective and efficient in predicting missing healthcare data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2022.3205064DOI Listing

Publication Analysis

Top Keywords

healthcare data
20
arima model
20
missing healthcare
12
missing data
12
data
11
time-aware missing
8
healthcare
8
data prediction
8
accurately predict
8
arima
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!