The high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary driver of the COVID-19 pandemic. While existing interventions prevent severe disease, they exhibit mixed efficacy in preventing transmission, presumably due to their limited antiviral effects in the respiratory mucosa, whereas interventions targeting the sites of viral replication might more effectively limit respiratory virus transmission. Recently, intranasally administered RNA-based therapeutic interfering particles (TIPs) were reported to suppress SARS-CoV-2 replication, exhibit a high barrier to resistance, and prevent serious disease in hamsters. Since TIPs intrinsically target the tissues with the highest viral replication burden (i.e., respiratory tissues for SARS-CoV-2), we tested the potential of TIP intervention to reduce SARS-CoV-2 shedding. Here, we report that a single, postexposure TIP dose lowers SARS-CoV-2 nasal shedding, and at 5 days postinfection, infectious virus shed is below detection limits in 4 out of 5 infected animals. Furthermore, TIPs reduce shedding of Delta variant or WA-1 from infected to uninfected hamsters. Cohoused "contact" animals exposed to infected, TIP-treated animals exhibited significantly lower viral loads, reduced inflammatory cytokines, no severe lung pathology, and shortened shedding duration compared to animals cohoused with untreated infected animals. TIPs may represent an effective countermeasure to limit SARS-CoV-2 transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522362 | PMC |
http://dx.doi.org/10.1073/pnas.2204624119 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFViruses
December 2024
ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France.
Equine infectious anemia virus (EIAV) is the simplest described within the family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.
View Article and Find Full Text PDFPharmaceutics
January 2025
Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Toxicology and Risk Assessment, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy.
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns-particularly those specific to this class of drugs-is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!