AI Article Synopsis

  • The study developed an internet-based mosquito monitor, MS-300, to track and capture vector mosquitoes crucial for controlling mosquito-borne diseases.
  • In laboratory and field tests, MS-300 demonstrated high efficiency rates of 98.5% for Aedes albopictus and 99.3% for Culex quinquefasciatus, significantly improving capture rates when baited.
  • Real-time data collected indicated distinct activity patterns of the mosquitoes and highlighted a strong link between mosquito captures and environmental temperature, supporting MS-300's effectiveness in monitoring these species.

Article Abstract

Background: The surveillance of vector mosquitoes is essential for prevention and control of mosquito-borne diseases. In this study, we developed an internet-based vector mosquito monitor, MS-300, and evaluated its efficiency for the capture of the important vector mosquitoes, Aedes albopictus and Culex quinquefasciatus, in laboratory and field trials.

Methodology/principal Findings: The linear sizes of adult Ae. albopictus and Cx. quinquefasciatus were measured and an infrared window was designed based on these data. A device to specifically attract these two species and automatically transmit the number of captured mosquitoes to the internet was developed. The efficiency of the device in capturing the two species was tested in laboratory, semi-field and open field trials. The efficiency results for MS-300 for catching and identifying Ae. albopictus in laboratory mosquito-net cages were 98.5% and 99.3%, and 95.8% and 98.6%, respectively, for Cx. quinquefasciatus. In a wire-gauze screened house in semi-field trials, the efficiencies of MS-300 baited with a lure in catching Ae. albopictus and Cx. quinquefasciatus were 54.2% and 51.3%, respectively, which were significantly higher than 4% and 4.2% without the lure. The real-time monitoring data revealed two daily activity peaks for Ae. albopictus (8:00-10:00 and 17:00-19:00), and one peak for Cx. quinquefasciatus (20:00-24:00). During a 98-day surveillance trial in the field, totals of 1,118 Ae. albopictus and 2,302 Cx. quinquefasciatus were captured by MS-300. There is a close correlation between the number of captured mosquitoes and the temperature in the field, and a positive correlation in the species composition of the captured samples among the mosquitoes using MS-300, BioGents Sentinel traps and human landing catches.

Conclusions/significance: The data support the conclusion that MS-300 can specifically and efficiently capture Ae. albopictus and Cx. quinquefasciatus, and monitor their density automatically in real-time. Therefore, MS-300 has potential for use as a surveillance tool for prevention and control of vector mosquitoes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455839PMC
http://dx.doi.org/10.1371/journal.pntd.0010701DOI Listing

Publication Analysis

Top Keywords

vector mosquitoes
16
albopictus quinquefasciatus
12
real-time monitoring
8
mosquitoes aedes
8
albopictus
8
aedes albopictus
8
albopictus culex
8
quinquefasciatus
8
culex quinquefasciatus
8
prevention control
8

Similar Publications

Vector-borne diseases are caused by microbes transmitted to humans through vectors such as mosquitoes, ticks, flies, and other arthropods. Three vector-borne diseases, filariasis, leishmaniasis, and malaria, are significant parasitic diseases which are responsible for long-term morbidity and mortality affecting millions globally. These diseases exhibit several similarities in transmission, health impacts, and the challenges faced in their control and prevention.

View Article and Find Full Text PDF

Background: India is committed to malaria elimination by the year 2030. According to the classification of malaria endemicity, the National Capital Territory of Delhi falls under category 1, with an annual parasite incidence of <1, and was targeted for elimination by 2022. Among others, population movement across states is one of the key challenges for malaria control, as it can result in imported malaria, thus introducing local transmission in an area nearing elimination.

View Article and Find Full Text PDF

The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded.

View Article and Find Full Text PDF

With their diverse species, mosquitoes are known to transmit the causal agents of diseases such as malaria, dengue, and yellow fever. Their high adaptability, attraction to humans, and variable adult behaviors make them a significant health concern. The focus on Aedes aegypti is significant for reducing vector-human contacts, monitoring insecticide resistance, and developing innovative vector management strategies.

View Article and Find Full Text PDF

Mosquito-borne diseases affect millions and cause numerous deaths annually. Effective vector control, which hinges on understanding their dispersal, is vital for reducing infection rates. Given the variability in study results, likely due to environmental and human factors, gathering local dispersal data is critical for targeted disease control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!