Inflammation has been linked to the onset and progression of a wide range of neuropathological disorders. The well-conserved outer mitochondrial membrane 18 kDa translocator protein (TSPO) is perceived as an in vivo neuroinflammation marker. A dearth of a reference region, genetic disparity influencing the ligand's affinity for TSPO, and a substantial signal in the endothelium of the brain veins contributes toward complications in quantifying TSPO positron emission tomography (PET) image. Up to the present time several radiotracers based on different pharmacophore such as (R)[ C]PK11195, [ F]DPA714, [ C]PBR28, [ C]ER176, and many more have been recognized for envisaging the prominent TSPO level observed in neurological conditions. Recently acetamidobenzoxazolone (ABO) scaffold, a bicyclic ring system composed of a phenyl ring fused to a carbamate and its substituted radiolabelled analogues especially at C-5 position has evidenced encouraging outcomes as next generation of TSPO PET ligands. Diverse ABO framework-based TSPO ligands have been designed embracing imperative aspects such as lipophilicity, metabolic profile, and capability to penetrate the blood-brain barrier apart from least effect of polymorphism (rs6971). Over the years numerous systematic literature reviews compiling different structural class of TSPO ligands characterized on the grounds of their binding affinity and metabolite profile have been reported but none is especially focused toward a fascinating benzoxazolone scaffold. This review exclusively bestows an overview of the recent advancements on ABO derivatives with neuroinflammation imaging potential and emphases on the structural features accountable for visualizing TSPO in-vivo with collation of published reports during last 10 years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ddr.21989 | DOI Listing |
Alzheimers Dement
December 2024
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden.
Background: Emerging evidence underscores the importance of neuroinflammation in the progression of Alzheimer's disease (AD) pathophysiology. Recent studies indicate the involvement of the inflammatory mechanisms both in amyloid- β (Aβ) and tau deposition in the brain. Nevertheless, due to the complexity of the immune responses and the intricate interplay between the peripheral and the central nervous systems, identifying biomarkers that reflect the brain´s inflammatory state in AD has been a challenge.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
Background: In-vivo PET imaging studies have demonstrated neuroinflammation (microglia reactivity) in the neocortex of Alzheimer's disease (AD) patients. However, the extent and implication of microglia reactivity in white matter regions remains unclear. Here, we explored microglia reactivity in white matter using PET imaging of the translocator protein (TSPO) in relation to core AD biomarkers (amyloid, tau, and astrogliosis), microstructural damage, and cognitive decline.
View Article and Find Full Text PDFBrain
January 2025
Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
Alzheimers Dement
December 2024
University of São Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Down syndrome (DS) is associated with mitochondrial dysfunction leading to higher levels of oxidative stress and cell degeneration. This fact, together with the overexpression of AD-related genes in trisomy 21, increases the risk of developing Alzheimer's disease (AD). Thus, it is important to look for interventions that could prevent mitochondrial damage before symptoms occur.
View Article and Find Full Text PDFBackground: Early neuroinflammation is involved in pathophysiology of Alzheimer's Disease (AD) and contributes to faster clinical decline. Thus, neuroinflammation has emerged as a promising therapeutic target for dementia. However, a better understanding of the interaction between central and peripheral inflammation in human disease and in vivo biomarkers are required for successful clinical trials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!