AI Article Synopsis

  • Ozonolysis of α-pinene is crucial for atmospheric chemistry, producing condensable vapors that contribute to aerosol formation and impact Earth's radiation balance.
  • The study identifies the formation of specific peroxy (RO) radicals and closed-shell products, particularly pinonic acid, with significant molar yields demonstrating good detection sensitivity.
  • The presence of NO reduces the formation of highly oxygenated organic molecules (HOMs) and shows a stronger suppression effect than in reactions involving hydroxyl radicals (OH) with α-pinene.

Article Abstract

Ozonolysis of α-pinene, CH, and other monoterpenes is considered to be one of the important chemical process in the atmosphere leading to condensable vapors, which are relevant to aerosol formation and, finally, for Earth's radiation budget. The formation of peroxy (RO) radicals, O,O-CH(O)O with = 0-3, and closed-shell products has been probed from the ozonolysis of α-pinene for close to atmospheric reaction conditions. (The "O,O" in the chemical formulas indicates the two carbonyl groups formed in the ozonolysis.) An additional series of RO radicals, O,O-CHO(O)O with = 1-3, emerged in the presence of NO additions of (1.7-50) × 10 molecules cm, whose formation can be explained via different processes starting from alkoxy (RO) radicals, such as the RO-driven autoxidation. The main closed-shell product is a substance with the composition CHO, probably pinonic acid, obtained with a molar yield (lower limit) of 0.26 independent of NO. Total molar product yields accounted for up to 0.71 indicating reasonable detection sensitivity of the analytical technique applied. For the isomeric O,O-CHO radicals, an average rate coefficient (RO + NO) = (1.5 ± 0.3) × 10 cm molecule s at 295 ± 2 K was determined. Product analysis showed a lowering in the formation of highly oxygenated organic molecules (HOMs) by a factor of ∼2.2 when adding 5 × 10 molecules cm of NO. The comparison with former results revealed that total HOM suppression by NO in the α-pinene ozonolysis is slightly stronger than in the OH + α-pinene reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c05094DOI Listing

Publication Analysis

Top Keywords

ozonolysis α-pinene
12
additional series
8
peroxy radicals
8
radicals oo-chooo
8
oo-chooo 1-3
8
formation
5
ozonolysis
5
α-pinene
5
radicals
5
peroxy radical
4

Similar Publications

Strategies for combining ionic and non-ionic functional groups are important for altering detergent properties and exploring new chemical spaces within the detergentome. Previous synthesis protocols for ionic/non-ionic hybrid detergents require asymmetric detergent precursors with independently addressable hydroxyl groups that can be decorated with charged groups. However, preparation of ionic/non-ionic headgroups can be tedious in terms of required synthesis steps and resource consumption.

View Article and Find Full Text PDF

Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis.

View Article and Find Full Text PDF

Computational Study of the 1,3-Dipolar Cycloaddition between Criegee Intermediates and Linalool: Atmospheric Implications.

J Phys Chem A

January 2025

Centro de Bioinformática, Simulación y Modelado (CBSM), Departamento de Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile.

In this research, we investigated the essential role of biogenic volatile organic compound emissions in regulating tropospheric ozone levels, atmospheric chemistry, and climate dynamics. We explored linalool ozonolysis and secondary organic aerosol formation mechanisms, providing key insights into atmospheric processes. Computational techniques, such as density functional theory calculations and molecular dynamics simulations, were employed for the analysis.

View Article and Find Full Text PDF

Fenton-like reactions between organic peroxides and transition-metal ions in the atmospheric aqueous phase have profound impacts on the chemistry, composition, and health effects of aerosols. However, the kinetics, mechanisms, and key influencing factors of such reactions remain poorly understood. In this study, we synthesized a series of monoterpene-derived α-acyloxyalkyl hydroperoxides (AAHPs), an important class of organic peroxides formed from Criegee intermediates during the ozonolysis of alkenes, and investigated their Fenton-like reactions with iron ions in the aqueous phase.

View Article and Find Full Text PDF

Assessment of Long-Term Degradation of Adsorbents for Direct Air Capture by Ozonolysis.

J Phys Chem C Nanomater Interfaces

January 2025

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

Porous adsorbents are a promising class of materials for the direct air capture of CO (DAC). Practical implementation of adsorption-based DAC requires adsorbents that can be used for thousands of adsorption-desorption cycles without significant degradation. We examined the potential degradation of adsorbents by a mechanism that appears to have not been considered previously, namely, ozonolysis by trace levels of ozone from ambient air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!