The aim of the study was to better understand the interplay between genetic factors and the aging process in the human retina through mapping complement factor H (CFH) and related proteins. Two human eyes, from 92- and 64-year-old donors, were genotyped for the expression of CFH-related 1 (CFHR1) and CFH-related 3 (CFHR3) genes. Deoxyribonucleic acid (DNA) was extracted and analyzed for concentration and purity with a spectrophotometer, at 260 nm. The results showed a DNA concentration of 469.17 ng∕μL in the aged retina and of 399.20 ng∕μL in the younger one. Through polymerase chain reaction (PCR) genotyping, the DNA CFHR1 and CFHR3 were visible as bands of 175 bp and 181 bp. Immunohistochemistry by immunofluorescence method was used with a panel of specific antibodies for CFH, CFHR1, CFHR3 and GFAP, a marker for Müller cells. All the samples were examined, and images captured using confocal microscopy. In the younger retina, CFH was localized in the inner plexiform layer and below the outer nuclear layer, while in the aged retina, it was found in the photoreceptors. CFH was also detected in the choriocapillaris and within the end-feet of the Müller cells. Our controls showed autofluorescence of the retinal pigment epithelium shedding light on a false positive CFH immunostaining of this layer. GFAP immunoreactivity highlighted an increased gliosis within the aged retina. CFHR3 signal was found in the microglia, while CFHR1 was detected in the choriocapillaris. In summary, underpinning the expression of these components can show the potential involvement of these modulators in implementing new treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593114PMC
http://dx.doi.org/10.47162/RJME.63.1.12DOI Listing

Publication Analysis

Top Keywords

aged retina
12
cfhr1 cfhr3
8
müller cells
8
detected choriocapillaris
8
retina
6
cfh
5
benefits genetic
4
genetic immunohistochemical
4
immunohistochemical markers
4
markers understanding
4

Similar Publications

Age-Related Choroidal Involution Is Associated with the Senescence of Endothelial Progenitor Cells in the Choroid.

Biomedicines

November 2024

Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada.

Choroidal involution is a common feature of age-related ischemic retinopathies such as age-related macular degeneration (AMD). It is now well recognized that endothelial progenitor cells (EPCs) are essential to endothelial repair processes and in maintaining vascular integrity. However, the contribution of EPCs and the role of senescence in age-related choroidal vascular degeneration remain to be investigated.

View Article and Find Full Text PDF

Neurodegeneration in glaucoma patients is clinically identified through longitudinal assessment of structure-function changes, including intraocular pressure, cup-to-disc ratios from fundus images, and optical coherence tomography imaging of the retinal nerve fiber layer. Use of human post-mortem ocular tissue for basic research is rising in the glaucoma field, yet there are challenges in assessing disease stage and severity, since tissue donations with informed consent are often unaccompanied by detailed pre-mortem clinical information. Further, the interpretation of disease severity based solely on anatomical and morphological assessments by histology can be affected by differences in death-to-preservation time and tissue processing.

View Article and Find Full Text PDF

Novel Insights Into Gyrate Atrophy of the Choroid and Retina (GACR): A Cohort Study.

J Inherit Metab Dis

January 2025

Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Gyrate atrophy of the choroid and retina (GACR, OMIM #258870) is a rare inherited metabolic disorder characterized by progressive chorioretinal degeneration and hyperornithinemia. Current therapeutic modalities potentially slow disease progression but are not successful in preventing blindness. To allow for trial development, increased knowledge of the clinical phenotype and current therapeutic outcomes is required.

View Article and Find Full Text PDF

Purpose: A projection-resolved optical coherence tomography angiography (PR-OCTA) algorithm with slab-specific strategy was applied in polypoidal choroidal vasculopathy (PCV) to differentiate between polyp and branching vascular network (BVN) and improve polyp detection by en face OCTA.

Methods: Twenty-nine participants diagnosed with PCV by indocyanine green angiography (ICGA) and 30 participants diagnosed with typical neovascular age-related macular degeneration (nAMD) were enrolled. Polyps were classified into three categories after using the slab-specific PR algorithm.

View Article and Find Full Text PDF

Methylmercury-induced visual deficits involve loss of GABAergic cells in the zebrafish embryo retina.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China. Electronic address:

Methylmercury (MeHg) is a neurotoxicant with adverse effects on visual systems from fish to man. Clinical signs of visual deficits including color-vision alterations, visual field constriction and blindness have been frequently identified in patients and affected animals following acute and chronic exposure to MeHg. However, it is still unclear whether MeHg causes developmental defects in the eye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!