An Atypical Acyl-CoA Synthetase Enables Efficient Biosynthesis of Extender Units for Engineering a Polyketide Carbon Scaffold.

Angew Chem Int Ed Engl

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.

Published: October 2022

AI Article Synopsis

  • * Researchers discovered a unique ACS (UkaQ) that lacks a critical regulatory residue, allowing it to efficiently work with a variety of substrates.
  • * After engineering UkaQ to enhance its stability and activity, they successfully used it to create diverse acyl-CoAs and synthesize novel antimycin analogues, advancing the potential for natural product biosynthesis.

Article Abstract

Acyl-CoAs are key precursors of primary and secondary metabolism. Their efficient biosynthesis is often impeded by the limited substrate specificity and low in vivo activity of acyl-CoA synthetases (ACSs) due to regulatory acylation of the catalytically important lysine residue in motif A10 (Lys-A10). In this study, we identified an unusual ACS (UkaQ) from the UK-2A biosynthetic pathway that naturally lacks the Lys-A10 residue and exhibits extraordinarily broad substrate specificity. Protein engineering significantly improved its stability and catalytic activity, enabling it to synthesize a large variety of acyl-CoAs with highly robust activity. By combining it with permissive carboxylases, we produced a large array of polyketide extender units and obtained six novel halobenzyl-containing antimycin analogues through an engineered biosynthetic pathway. This study significantly expands the catalytic mode of ACSs and provides a potent tool for the biosynthesis of acyl-CoA-derived natural products.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202208734DOI Listing

Publication Analysis

Top Keywords

efficient biosynthesis
8
extender units
8
substrate specificity
8
biosynthetic pathway
8
atypical acyl-coa
4
acyl-coa synthetase
4
synthetase enables
4
enables efficient
4
biosynthesis extender
4
units engineering
4

Similar Publications

Background: Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes.

View Article and Find Full Text PDF

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS).

View Article and Find Full Text PDF

Introduction: Orchids are renowned for their intricate floral structures, where sepals and petals contribute significantly to ornamental value and pollinator attraction. In Section , the distinctive curvature of these floral organs enhances both aesthetic appeal and pollination efficiency. However, the molecular and cellular mechanisms underlying this trait remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!