As a contribution to the development of new dual/multifunctional drugs, a novel therapeutical scaffold merging key structural features from memantine and M30D was designed, synthesized, and explored for its AChE/BuChE inhibitory activity and neuroprotective effects. All synthetized hybrids were not able to inhibit AChE, but most of them exhibit inhibition with high selectivity toward butyrylcholinesterase (BuChE). Notably, among the tested compounds, amantadine/M30D hybrids with six, seven, nine, and twelve methylene groups in the spacer (, , , and ) not only highlighted having the best potency and selective butyrylcholinesterase inhibition greater than 83% but also, particularly and , elicited considerable neuroprotection when evaluated in pretreatment conditions, by reducing injury effects caused by glutamate with maximum protection reached about 47.82 ± 0.81% () and 42 ± 2.20% () in comparison with memantine (37.27 ± 2.69%). Likewise, we chose as the hit compound, which in a glutamate excitotoxity coculture model prevented astroglia reactivity and neuronal death, as well as a 91% restoration of calcium levels and an increasing ATP level in both pre-/post-treatments of 61.48 ± 4.60 and 45.16 ± 10.55%, respectively. Regarding docking studies, a blockade of the NMDA channel pore by would explain its neuroprotective response. Finally, the hit compound exhibited blood-brain barrier (BBB) permeability and human plasma stability, as well as an optimal neuropharmacokinetic profile. From a therapeutic perspective, merging key pharmacophoric features from memantine and M30D provides a new medicinal scaffold with dual-/multifunctional properties and human plasma stability for the future development of potential drugs for treating AD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.2c00300DOI Listing

Publication Analysis

Top Keywords

selective butyrylcholinesterase
8
butyrylcholinesterase inhibition
8
neuroprotective effects
8
merging key
8
features memantine
8
memantine m30d
8
hit compound
8
human plasma
8
plasma stability
8
novel multipotent
4

Similar Publications

Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized a click chemistry approach and preliminarily screened for cholinesterase and Aβ aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC = 0.

View Article and Find Full Text PDF

Background: Curcuminoids, the bioactive compounds found in turmeric, exhibit potent antioxidant, anti-inflammatory, and neuroprotective properties. This study aims to enhance the extraction of curcuminoids from turmeric using environmentally friendly solvents supercritical CO (scCO) combined with natural deep eutectic solvents (NADESs) in one process, and to evaluate the resulting biological activity.

Methods: A Box-Behnken statistical design was applied to optimize scCO extraction conditions-pressure, CO volume, and temperature-to maximize curcuminoid yield.

View Article and Find Full Text PDF

Background: Sudden infant death syndrome (SIDS) is the leading cause of death among infants aged between one month and one year. Altered enzyme activities or expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have been observed in SIDS patients that might lead to disturbed autonomic function and, together with other risk factors, might trigger SIDS. To explore the contribution of AChE and BChE from a genomic viewpoint, we sought to investigate the association between SIDS and selected single nucleotide polymorphisms (SNPs) in the and genes.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!