This study investigates the surface and interfacial properties of the different components of a system composed of an agglomerated cork stopper in a glass bottleneck. Each constituting element has carefully been examined to unveil its underlying complexity. First, there was no effect of supercritical CO pretreatment or particle size on the surface properties of cork particles. The wettability of the binder was also evaluated, showing that the binder can spread relatively well on the surface of cork particles. Second, capillary rise measurements carried out on three different agglomerated corks indicate that the formulation of the agglomerates has no effect on its surface properties. The binder represents only a small fraction of the total stopper volume and is therefore not the major contributor to the surface tension. Third, the two coating agents studied display different behaviors. The first one, composed of a paraffin emulsion, exhibits poorer wettability than the second one, composed of a paraffin and silicone emulsion. However, once the coating agent has solidified on the surface of the stopper, both coatings display similar adhesion with the glass of the bottleneck. Starting with fundamental considerations, and then progressing to a more applicative aspect, has led to a better understanding of the properties of cork-based materials in their use as wine stoppers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c07299 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDC) have received extensive research interests and investigations in the past decade. In this research, we report the first experimental measurement of the in-plane thermal conductivity of MoS monolayer under a large mechanical strain using optothermal Raman technique. This measurement technique is direct without additional processing to the material, and MoS's absorption coefficient is discovered during the measurement process to further increase this technique's precision.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Engineering, Wuhan Polytechnic University,Wuhan 430023, China.
Glycosylation can be used to improve the emulsifying properties of protein by covalently binding with sugar. In this study, we prepared coconut protein (CP) -polygalacturonic acid (PA) conjugates by dry-heat method, studied the effect of PA with different molecular weight on the structure and functionality of CP, and characterized the interfacical behavior of CP at the oil-water interface to establish the relationship between interfacial behavior and emulsion stability. The results showed that different molecular weights of PA (28.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China. Electronic address:
Non-dairy whipped creams (NDWC) are a typical food emulsion system and are gaining popularity among consumers. Oleogels as reasonable alternatives to trans and saturated fats in foods show great potential application in NDWC. Effects of different proportions of oleogel (30 %-70 %) as base oil on the crystallization behavior, appearance, interface and rheological properties of NDWC were evaluated.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong Road 130, 200237, Shanghai, CHINA.
Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!