The evaluation of the poisoning effect of complex components in practical gas on DCM (dichloromethane) catalytic ozonation is of great significance for enhancing the technique's environmental flexibility. Herein, Ca, Pb, As, and NO/SO were selected as a typical alkaline-earth metal, heavy metal, metalloid, and acid gas, respectively, to evaluate their interferences on catalytic behaviors and surface properties of an optimized urchin-like CuMn catalyst. Ca/Pb loading weakens the formation of oxygen vacancies, oxygen mobility, and acidity due to the fusion of Mn-Ca/Pb-O, leading to their inferior catalytic performance with poor CO selectivity and mineralization rate. Noticeably, the presence of As induces excessively strong acidity, facilitating the inevitable formation of byproducts. Catalytic co-ozonation of NO/DCM is achieved with stoichiometric ozone addition. Unfortunately, SO introduction brings irreversible deactivation due to strong competition adsorption and the loss of active sites. Unexpectedly, Ca loading protects active sites from an attack by SO. The formation of unstable sulfites and the released Mn-O structure offset the negative effect from SO. Overall, the catalytic ozonation of DCM exhibits a distinctive priority in the antipoisoning of metals with the maintenance of DCM conversion. The construction of more stable acid sites should be the future direction of catalyst design; otherwise, catalytic ozonation should be arranged together with post heavy metal capture and a deacidification system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c03811 | DOI Listing |
Chemosphere
January 2025
Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:
J Environ Manage
January 2025
Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:
This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
This article presents a comprehensive examination of the combined catalytic conversion technology for nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the primary factors contributing to the formation of photochemical smog, ozone, and PM2.5. These pollutants present a significant threat to air quality and human health.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan. Electronic address:
Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.
View Article and Find Full Text PDFFoods
December 2024
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Developing and implementing technologies that can significantly reduce food loss during storage and transport are of paramount importance. Ozone synergistic catalytic oxidation (OSCO) technology has been developed, which sterilizes bacteria and viruses on the surface of food and degrades ethylene released during fruit storage through the active oxygen produced by the catalytic decomposition of ozone. Herein, we report the hydrothermal synthesis of MnO with distinct phase compositions and nanostructures through simply varying the reaction temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!