Severe mitral regurgitation (MR) is a common valve disease which is associated with high mortality, if only managed medically. MR produces chronic and progressive volume overload with left atrial (LA) and left ventricular (LV) dilatation and dysfunction, atrial fibrillation (AF) and eventually myocardial fibrosis, irrespective of ejection fraction (EF). Surgical correction (mitral valve repair) of MR removes the volume overload, hence unmasks pre-operative LV structure and function disturbances, including reduced EF and global longitudinal and circumferential strain, as well as LA volume and strain. This review aims at describing LA remodeling before and after surgical repair.

Download full-text PDF

Source
http://dx.doi.org/10.1111/echo.15452DOI Listing

Publication Analysis

Top Keywords

left atrial
8
mitral regurgitation
8
volume overload
8
atrial myocardial
4
myocardial intrinsic
4
intrinsic function
4
function remodeling
4
remodeling response
4
response repair
4
repair primary
4

Similar Publications

Background: In developing countries, rheumatic mitral valve stenosis (MS) is still a problem and its progression leads to left atrial (LA) damage. Due to the complexity of the LA geometry, currently used techniques like antero-posterior dimension (LAD) and 2D echo derived LA volume (LAV) have several limitations that are corrected by 3D derived LA volumes in addition to functional evaluation.

Purpose: To assess the LA functions using 2D speckle tracking echocardiography and 3D transthoracic echocardiography in patients with clinically significant MS in comparison to normal healthy subjects.

View Article and Find Full Text PDF

Lateral Atrial Expression Patterns Provide Insights into Local Transcription Disequilibrium Contributing to Disease Susceptibility.

Circ Genom Precis Med

January 2025

CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands.

Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.

Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.

View Article and Find Full Text PDF

Multipath joint ablation strategy for focal atrial tachycardia originating from patent foramen ovale: a case report.

Front Cardiovasc Med

January 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Introduction: Focal atrial tachycardia (FAT) is predominant in the pediatric population. Recent research has identified cases of sustained FAT originating from the interatrial septum (IAS); a subset of cases presents a unique challenge, with foci originating from the peri-patent foramen ovale (peri-PFO), requiring specialized management during catheter ablation. Here, we present a rare case of peri-PFO-associated FAT that resulted in tachycardia-related cardiomyopathy and propose a comprehensive multipath joint strategy for the successful treatment of PFO-associated FAT.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is defined by heart failure (HF) with a left ventricular ejection fraction (LVEF) of at least 50%. HFpEF has a complex and heterogeneous pathophysiology with multiple co-morbidities contributing to its presentation. Establishing the diagnosis of HFpEF can be challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!