A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface-Induced cAMP Signaling Requires Multiple Features of the Pseudomonas aeruginosa Type IV Pili. | LitMetric

Surface-Induced cAMP Signaling Requires Multiple Features of the Pseudomonas aeruginosa Type IV Pili.

J Bacteriol

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.

Published: October 2022

Pseudomonas aeruginosa type IV pili (TFP) are important for twitching motility and biofilm formation. TFP have been implicated in surface sensing, a process whereby surface-engaged cells upregulate the synthesis of the second messenger cAMP to propagate a signaling cascade leading to biofilm initiation and repression of motility. Here, we showed that mutations in PilA impairing proteolytic processing of the prepilin into mature pilin as well as the disruption of essential TFP components, including the PilC platform protein and PilB assembly motor protein, fail to induce surface-dependent cAMP signaling. We showed that TFP retraction by surface-engaged cells was required to induce signaling and that the retractile motor PilT was both necessary and sufficient to power surface-specific induction of cAMP. Furthermore, full TFP function required to support twitching motility is not required for robust cAMP signalling. The PilU retraction motor, in contrast, was unable to support full signaling in the absence of PilT. Finally, while we confirmed that PilA and PilJ interacted by bacterial two-hybrid analysis, our data do not support the current model that PilJ-PilA interaction drives cAMP signaling. Surface sensing by P. aeruginosa requires TFP. TFP plays a critical role in the induction of the second messenger cAMP upon surface contact; this second messenger is part of a larger cascade involved in the transition from a planktonic to a biofilm lifestyle. Here, we showed that TFP must be deployed and actively retracted by the PilT motor for the full induction of cAMP signaling. Furthermore, the mechanism whereby TFP retraction triggers cAMP induction is not well understood, and our data argue against one of the current models in the field proposed to address this knowledge gap.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578403PMC
http://dx.doi.org/10.1128/jb.00186-22DOI Listing

Publication Analysis

Top Keywords

camp signaling
16
second messenger
12
tfp
9
pseudomonas aeruginosa
8
aeruginosa type
8
type pili
8
twitching motility
8
surface sensing
8
surface-engaged cells
8
camp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!