The Potential Application of Branch-PCR Assembled PTEN Gene Nanovector in Lung Cancer Gene Therapy.

Chembiochem

State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, 300071, Tianjin, China.

Published: November 2022

Gene therapy offers an alternative and promising avenue to lung cancer treatment. Here, we used dibenzocyclooctyne (DBCO)-branched primers to construct a PTEN gene nanovector (NP-PTEN) through branch-PCR. NP-PTEN showed the nanoscale structure with biocompatible size (84.7±11.2 nm) and retained the improved serum stability compared to linear DNA. When transfected into NCI-H1299 cancer cells, NP-PTEN could overexpress PTEN protein to restore PTEN functions through the deactivation of PI3K-AKT-mTOR signaling pathway to inhibit cell proliferation and induce cell apoptosis. The apoptosis rate of NCI-H1299 cancer cells could reach up to 54.5 %±4.6 % when the transfection concentration of NP-PTEN was 4.0 μg/mL. In mice bearing NCI-H1299 tumor xenograft intratumorally administrated with NP-PTEN, the average tumor volume and tumor weight was separately reduced by 61.7 % and 63.9 %, respectively, compared with the PBS group on the 18  day of administration. The anticancer efficacy of NP-PTEN in NCI-H1299 tumor xenograft suggests the promising therapeutic potential of branch-PCR assembled PTEN gene nanovectors in lung cancer gene therapy and also provided more opportunities to introduce two or more tumor suppressor genes as an all-in-one gene nanovector for multiple gene-based cancer gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202200387DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
pten gene
12
gene nanovector
12
lung cancer
12
cancer gene
12
branch-pcr assembled
8
assembled pten
8
gene
8
nci-h1299 cancer
8
cancer cells
8

Similar Publications

Rare dual MYH9-ROS1 fusion variants in a patient with lung adenocarcinoma: A case report.

Medicine (Baltimore)

January 2025

Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.

Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.

View Article and Find Full Text PDF

Three cases of hemoglobin M disease in a family lineage: Case report and literature review.

Medicine (Baltimore)

January 2025

Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.

Rationale: This study presents a case of hemoglobin M disease (HMD), a rare inherited disorder characterized by persistent cyanosis and hypoxemia, observed across 3 generations within a single family. The diagnosis of HMD poses significant challenges, particularly in asymptomatic individuals, due to its rarity and the subtlety of its symptoms. Notably, there is a scarcity of reports on methemoglobinemia in pediatric populations, which further complicates early detection and intervention.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.

Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!