Porous-Structure-Promoted Tribo-Induced High-Performance Self-Powered Tactile Sensor toward Remote Human-Machine Interaction.

Adv Sci (Weinh)

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

Published: November 2022

Self-powered tactile sensor with versatile functions plays a significant role in the development of an intelligent human-machine interaction (HMI) system. Herein, a hybrid self-powered porous-structured tactile sensor (SPTS) is proposed by monolithically integrating a porous triboelectrification-induced electroluminescence (TIEL) component and a single-electrode triboelectric nanogenerator with the high charge generation in the bulk volume. At a low pressure of 10 kPa, TIEL intensity can be significantly improved by three times, which is superior to that in previous reports, with enhanced triboelectricity. Based on the enhancement brought by the porous structure and optimized parameters, the SPTS achieves significant sensing performance in both optical and electrical modes. To demonstrate the potential of practical applications, a programmable optical and electrical dual-mode HMI system is established based on SPTS to remotely control an intelligent vehicle and operate a computer game through identifying finger touch trajectories. This work not only contributes a new economical-effective methodology toward a high-performance tribo-induced self-powered tactile sensor but also facilitates the remote control of HMI with dual-mode functionality, which has broad potential applications in the fields of intelligent robots, augmented reality, flexible wearable electronics, and smart home.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661844PMC
http://dx.doi.org/10.1002/advs.202203510DOI Listing

Publication Analysis

Top Keywords

tactile sensor
16
self-powered tactile
12
human-machine interaction
8
hmi system
8
optical electrical
8
porous-structure-promoted tribo-induced
4
tribo-induced high-performance
4
self-powered
4
high-performance self-powered
4
tactile
4

Similar Publications

Inspired by human skin, bionic tactile sensing is effectively promoting development and innovation in many fields with its flexible and efficient perception capabilities. Optical fiber, with its ability to perceive and transmit information and its flexible characteristics, is considered a promising solution in the field of tactile bionics. In this work, one optical fiber tactile sensing system based on a flexible PDMS-embedded optical fiber ring resonator (FRR) is designed for braille recognition, and the Pound-Drever-Hall (PDH) demodulation scheme is adopted to improve the detection sensitivity.

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.

View Article and Find Full Text PDF

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing.

Materials (Basel)

January 2025

Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.

Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!