A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolution of the Gut Microbiome in HIV-Exposed Uninfected and Unexposed Infants during the First Year of Life. | LitMetric

AI Article Synopsis

  • HIV-exposed uninfected infants (HEU) show abnormal immune functions and higher infection rates in their first 6 months, with mechanisms behind these issues still unclear.
  • The study explored the gut microbiota of HEU and HIV-uninfected infants (HUU) in South Africa by analyzing microbiomes from infant stool, maternal stool, and breast milk over several weeks.
  • Findings revealed differences in microbial composition between HEU and HUU infants, especially in early infancy, indicating that maternal gut microbiomes and feeding patterns significantly shape HEU gut microbiomes, which tend to normalize over time as the risk of infections decreases.

Article Abstract

HIV-exposed uninfected infants (HEU) have abnormal immunologic functions and increased infectious morbidity in the first 6 months of life, which gradually decreases thereafter. The mechanisms underlying HEU immune dysfunctions are unknown. We hypothesized that unique characteristics of the HEU gut microbiota associated with maternal HIV status may underlie the HEU immunologic dysfunctions. We characterized the infant gut, maternal gut, and breast milk microbiomes of mother-infant pairs, including 123 with HEU and 117 with HIV-uninfected infants (HUU), from South Africa. Pan-bacterial 16S rRNA gene sequencing was performed on (i) infant stool at 6, 28, and 62 weeks; (ii) maternal stool at delivery and 62 weeks; and (iii) breast milk at 6 weeks. Infant gut alpha and beta diversities were similar between groups. Microbial composition significantly differed, including 12 genera, 5 families and 1 phylum at 6 weeks; 12 genera and 2 families at 28 weeks; and 2 genera and 2 families at 62 weeks of life. Maternal gut microbiomes significantly differed in beta diversity and microbial composition, and breast milk microbiomes differed in microbial composition only. Infant gut microbiotas extensively overlapped with maternal gut and minimally with breast milk microbiotas. Nevertheless, exclusively breastfed HEU and HUU had less divergent microbiomes than nonexclusively breastfed infants. Feeding pattern and maternal gut microbiome imprint the HEU gut microbiome. Compared to HUU, the HEU gut microbiome prominently differs in early infancy, including increased abundance of taxa previously observed to be present in excess in adults with HIV. The HEU and HUU gut microbiome compositions converge over time, mirroring the kinetics of HEU infectious morbidity risk. HIV-exposed uninfected infants (HEU) are highly vulnerable to infections in the first 6 months of life, and this vulnerability decreases to the age of 24 months. Because the microbiome plays a critical role in the education of the infant immune system, which protects them against infections, we characterized the gut microbiomes of HEU and HIV-unexposed infants (HUU) in the first year of life. The HEU and HUU gut microbiomes showed prominent differences at 6 and 28 weeks of life but converged at 62 weeks of life, mirroring the time course of the HEU excess infectious morbidity and suggesting a potential association between the infant gut microbiome structure and susceptibility to infections. Infant gut microbiotas extensively overlapped with maternal gut and minimally with breast milk microbiotas. Moreover, exclusively breastfed HEU and HUU had less divergent microbiomes at 6 and 28 weeks than nonexclusively breastfed HEU and HUU. The factors that affect the HEU gut microbiome, maternal gut microbiome and exclusive breastfeeding, may be targeted by interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600264PMC
http://dx.doi.org/10.1128/mbio.01229-22DOI Listing

Publication Analysis

Top Keywords

gut microbiome
32
maternal gut
24
infant gut
20
breast milk
20
heu huu
20
gut
18
heu
17
heu gut
16
hiv-exposed uninfected
12
infectious morbidity
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!