It has been 30 years since the first member of the protease-activated receptor (PAR) family was discovered. This was followed by the discovery of three other receptors, including PAR2. PAR2 is a G protein-coupled receptor activated by trypsin site-specific proteolysis. The process starts with serine proteases acting between arginine and serine, creating an N-terminus that functions as a tethered ligand that binds, after a conformational change, to the second extracellular loop of the receptor, leading to activation of G-proteins. The physiological and pathological functions of this ubiquitous receptor are still elusive. This review focuses on PAR2 activation and its distribution under physiological and pathological conditions, with a particular focus on the pancreas, a significant producer of trypsin, which is the prototype activator of the receptor. The role in acute or chronic pancreatitis, pancreatic cancer, and diabetes mellitus will be highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841802 | PMC |
http://dx.doi.org/10.33549/physiolres.934931 | DOI Listing |
N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
Research Institute, Children's Hospital of Orange County, Orange, CA, USA.
Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.
View Article and Find Full Text PDFThe neurotransmitter acetylcholine (ACh) is essential in both the central and peripheral nervous systems. Recent studies highlight the significance of interactions between ACh and various neuromodulators in regulating complex behaviors. The ability to simultaneously image ACh and other neuromodulators can provide valuable information regarding the mechanisms underlying these behaviors.
View Article and Find Full Text PDFUnlabelled: Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function.
View Article and Find Full Text PDFBackground: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!