Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-atom catalysts (SACs) exhibit unparalleled atomic utilization and catalytic efficiency, yet it is challenging to modulate SACs with highly dispersed single-atoms, mesopores, and well-regulated coordination environment simultaneously and ultimately maximize their catalytic efficiency. Here, a generalized strategy to construct highly active ferric-centered SACs (Fe-SACs) is developed successfully via a biomineralization strategy that enables the homogeneous encapsulation of metalloproteins within metal-organic frameworks (MOFs) followed by pyrolysis. The results demonstrate that the constructed metalloprotein-MOF-templated Fe-SACs achieve up to 23-fold and 47-fold higher activity compared to those using metal ions as the single-atom source and those with large mesopores induced by Zn evaporation, respectively, as well as up to a 25-fold and 1900-fold higher catalytic efficiency compared to natural enzymes and natural-enzyme-immobilized MOFs. Furthermore, this strategy can be generalized to a variety of metal-containing metalloproteins and enzymes. The enhanced catalytic activity of Fe-SACs benefits from the highly dispersed atoms, mesopores, as well as the regulated coordination environment of single-atom active sites induced by metalloproteins. Furthermore, the developed Fe-SACs act as an excellent and effective therapeutic platform for suppressing tumor cell growth. This work advances the development of highly efficient SACs using metalloproteins-MOFs as a template with diverse biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202205674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!