Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the last decades, the field of metagenomics aided by NGS technologies has grown exponentially and is now a cornerstone tool in medicine. However, even with the current technologies, obtaining a conclusive identification of an organism can be challenging due to using reference-based methods. Consequently, when releasing a new repository of genomic data that contains de-novo sequences, it is problematic to characterize its content. In this paper, we propose a novel method for organism identification and the creation and characterization of genomic databases. For identification, we propose a three-step pipeline for reference-free reconstruction, reference-based classification and features-based classification. On the other hand, for content exposition and extraction, the sequences and their identification are aggregated into a web database catalogue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI220932 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!