A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new brain-cutting device and ultraviolet resin-mounted human brain slices as a teaching adjunct for neuroanatomy education. | LitMetric

AI Article Synopsis

  • Traditional methods of neuroanatomy education are outdated and need enhancement to keep pace with advances in neuroscience research.
  • A new 3D-printed device (human brain-cutting mold, HBCM) allows for the production of uniform 3mm brain slices, improving the quality and accuracy of neuroanatomical education.
  • This innovative approach includes creating semi-permanent brain specimens using UV resin, which maintains clarity and detail, aiding students in transitioning from 2D images to understanding 3D brain structures.

Article Abstract

Although the level of neuroscience research is rapidly developing with the introduction of new technologies, the method of neuroanatomy education remains at the traditional level and requires improvement to meet the needs of educators and trainees. We developed a new three-dimensional (3D) printed device (human brain-cutting mold, HBCM) for creating human brain slices; moreover, we demonstrated a simple method for creating semi-permanent ultraviolet (UV) resin-mounted brain slice specimens for neuroanatomy education. We obtained brain slices of uniform thickness (3 mm) through the HBCM; the resultant brain slices were optimal for assessing morphological details of the human brain. Furthermore, we used an agar-embedding method for brain-slicing with the HBCM, which minimized geometrical distortions of the brain slices. Also, we prepared semi-permanent brain serial specimens using an acrylic brain slice frame and UV-curable resin, which was highly compatible with moist bio-specimens. During UV resin curing, neither air bubble formation nor color change occurred. The resultant UV resin-mounted brain slices produced definite coronal sections with high transparency and morphological accuracy. We also performed 3D modeling by stacking brain slice images that differentiated the cortical area and nine subcortical regions via manual segmentation. This method could be a reliable alternative for displaying high-quality human brain slices and would be helpful for students and trainee to understand anatomical orientation from 2D images to 3D structures. Also, this may present an innovative approach for preparing and preserving coronal sections of the normal or pathological human brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644958PMC
http://dx.doi.org/10.1111/joa.13757DOI Listing

Publication Analysis

Top Keywords

brain slices
28
human brain
20
brain
13
neuroanatomy education
12
brain slice
12
ultraviolet resin-mounted
8
resin-mounted brain
8
coronal sections
8
slices
7
human
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!