Hyperoside (Hyp) self-assembled polymeric micelles (Hyp-PMs) were purposely developed to enhance aqueous solubility, availability and anti-oxidative effect of Hyp. In preparing Hyp-PMs, we employed the thin film dispersion method with the micelles consisting of TPGs and mPEG2000-PDLLA3000. The particle size, polydispersity index and zeta potential of Hyp-PMs were 67.42 ± 1.44 nm, 0.229 ± 0.015 and -18.67 ± 0.576 mV, respectively, coupled with high encapsulation efficiency (EE)of 90.63 ± 1.45% and drug loading (DL) of 6.97 ± 1.56%. Furthermore, the value of critical micelle concentration (CMC) was quite low, which indicated good stability and improved self-assembly ability of Hyp-PMs. Also, trend of Hyp release from Hyp-PMs demonstrated enhanced solubility of Hyp. Similarly, in comparison with free Hyp, oral bioavailability of Hyp-PMs was improved (about 8 folds) whilst half-life of Hyp-PMs was extended (about 3 folds). anti-oxidative effect showed obvious strong scavenging DPPH capability of Hyp-PMs, which may be attributed to its smaller size and better solubility. Altogether, Hyp-PMs may serve as a possible strategy to potentially enhance aqueous solubility, bioavailability and anti-oxidative effect of Hyp, which may play a key role in Hyp application in the pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10837450.2022.2122506 | DOI Listing |
Pharm Dev Technol
September 2022
College of Pharmacy, Jiangsu University, Zhenjiang, China.
Hyperoside (Hyp) self-assembled polymeric micelles (Hyp-PMs) were purposely developed to enhance aqueous solubility, availability and anti-oxidative effect of Hyp. In preparing Hyp-PMs, we employed the thin film dispersion method with the micelles consisting of TPGs and mPEG2000-PDLLA3000. The particle size, polydispersity index and zeta potential of Hyp-PMs were 67.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!