Any treatment that affects seed germination and seedling development is of paramount importance from an agricultural point of view since they are critical prerequisites for successful crop production. In present study, we have examined the after-effect of ultrasonication (at 30 kHz, 70 W for 5 min) of winter wheat (Triticum aestivum L. cv. SE15) seeds on the early seedling growth and development, and accompanying changes in the DNA methylation and transcriptomic pattern in 7-day-old seedlings. We used mRNA-sequencing and whole genome bisulfite sequencing (WGBS) to identify significantly differentially expressed genes (DEGs), significantly differently methylated regions (DMRs) and genes (DMGs). Ultrasonication of seeds did not alter the germination rate but increased both the length and weight of roots and shoots of 7-day-old seedlings significantly by 23%-68% and 16%-28%, respectively. Analyzing the expression intensity of 107,891 genes, significantly differentially expressed sequences related mainly to starch biosynthesis, IAA biosynthesis, photosynthesis and TCA cycle pathways. The same pathways were also affected by DNA-methylation changes. DNA hypomethylation occurred in the global methylation profile after ultrasound treatment altering the accessibility of some genes for transcription. Transcriptomic changes suggested alterations in the crosstalk between IAA and sucrose signaling, enhancement of growth processes, and increased activity of nuclear transcription factor stimulating the transcription of genes having CCAAT motif in the promoter. In the present first whole genome level study, we have identified seed ultrasonication as a priming technique that can act as a hypomethylating agent and thereby is able to modify the mRNA transcription allowing enhanced seedling growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826007 | PMC |
http://dx.doi.org/10.1111/ppl.13777 | DOI Listing |
Leukemia
January 2025
Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
Off-label hypomethylating agents and venetoclax (HMA/VEN) are often used for relapsed and refractory (R/R) AML patients. However, predictors of outcome are elusive. The objective of the current retrospective observational multicenter study of 240 adult patients (median age 68.
View Article and Find Full Text PDFTher Adv Hematol
January 2025
Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, Shaanxi 710004, China.
Background: Medical resources, especially blood products, were in short supply during the COVID-19. Less intensive therapy with hypomethylating agents/venetoclax (VEN) seems an effective treatment option for patients with acute myeloid leukemia (AML).
Objectives: To retrospectively analyze the efficacy and safety of VEN combined with azacitidine (AZA) in young adult patients with newly diagnosed (ND) AML.
Cancers (Basel)
December 2024
Department of Hematology, Hospital Clínic Barcelona, 08036 Barcelona, Spain.
Even though venetoclax in combination with azacitidine (VenAza) is considered a low-intensity regimen, its patients present a high incidence of cytopenia and infections during the first courses, making the initial management a challenging phase. This difficulty in our center led to the establishment of an At-Home (AH) program for ramp-up and follow-up patients during the VenAza combination induction phase focused on therapy administration, patient and caregiver education, and management of adverse events (AEs). A total of 70 patients with newly diagnosed acute myeloid leukemia (ND-AML) or relapsed/refractory AML (R/R AML) were treated with VenAza from March 2019 to May 2022.
View Article and Find Full Text PDFEur J Haematol
January 2025
Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy.
FLT3 mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Significant advancements have been made in developing FLT3 inhibitors (FLT3Is), such as quizartinib, which have improved treatment outcomes in both newly diagnosed and relapsed/refractory AML. Resistance to FLT3Is remains a major clinical challenge, driven by diverse mechanisms including FLT3 point mutations, cellular escape pathways, and the influence of the bone marrow microenvironment.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Germany.
Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!