This paper designs a multimodal convolutional neural network model for the intelligent analysis of the influence of music genres on children's emotions by constructing a multimodal convolutional neural network model and profoundly analyzing the impact of music genres on children's feelings. Considering the diversity of music genre features in the audio power spectrogram, the Mel filtering method is used in the feature extraction stage to ensure the effective retention of the genre feature attributes of the audio signal by dimensional reduction of the Mel filtered signal, deepening the differences of the extracted features between different genres, and to reduce the input size and expand the model training scale in the model input stage, the audio power spectrogram obtained by feature extraction is cut the MSCN-LSTM consists of two modules: multiscale convolutional kernel convolutional neural network and long and short term memory network. The MSCNN network is used to extract the EEG signal features, the LSTM network is used to remove the temporal characteristics of the eye-movement signal, and the feature fusion is done by feature-level fusion. The multimodal signal has a higher emotion classification accuracy than the unimodal signal, and the average accuracy of emotion quadruple classification based on a 6-channel EEG signal, and children's multimodal signal reaches 97.94%. After pretraining with the MSD (Million Song Dataset) dataset in this paper, the model effect was further improved significantly. The accuracy of the Dense Inception network improved to 91.0% and 89.91% on the GTZAN dataset and ISMIR2004 dataset, respectively, proving that the Dense Inception network's effectiveness and advancedness of the Dense Inception network were demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444378 | PMC |
http://dx.doi.org/10.1155/2022/5611456 | DOI Listing |
Int J Med Inform
January 2025
University of Coimbra, Faculty of Medicine, Coimbra, Portugal; Department of Gastroenterology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. Electronic address:
Background: The wireless capsule endoscope (CE) is a valuable diagnostic tool in gastroenterology, offering a safe and minimally invasive visualization of the gastrointestinal tract. One of the few drawbacks identified by the gastroenterology community is the time-consuming task of analyzing CE videos.
Objectives: This article investigates the feasibility of a computer-aided diagnostic method to speed up CE video analysis.
Comput Biol Med
January 2025
Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of fetal echocardiographic analysis; this review presents the findings from a literature review in this area. Searches were queried at leading indexing platforms ACM, IEEE Xplore, PubMed, Scopus, and Web of Science, including papers published until July 2023.
View Article and Find Full Text PDFJ Magn Reson
January 2025
UC Berkeley - UCSF Graduate Program in Bioengineering, 1700 4th St, San Francisco, CA 94158, USA; Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th St, San Francisco, CA 94158, USA.
Fitting rate constants to Hyperpolarized [1-C]Pyruvate (HP C13) MRI data is a promising approach for quantifying metabolism in vivo. Current methods typically fit each voxel of the dataset using a least-squares objective. With these methods, each voxel is considered independently, and the spatial relationships are not considered during fitting.
View Article and Find Full Text PDFNeural Netw
December 2024
Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Centre for AI-Physics Modelling, Imperial-X, White City Campus, Imperial College London, W12 7SL, UK.
Machine learning (ML) has benefited from both software and hardware advancements, leading to increasing interest in capitalising on ML throughout academia and industry. There have been efforts in the scientific computing community to leverage this development via implementing conventional partial differential equation (PDE) solvers with machine learning packages, most of which rely on structured spatial discretisation and fast convolution algorithms. However, unstructured meshes are favoured in problems with complex geometries.
View Article and Find Full Text PDFSens Diagn
December 2024
Department of Bioengineering, Rice University Houston TX 77030 USA
CRISPR-Cas-based lateral flow assays (LFAs) have emerged as a promising diagnostic tool for ultrasensitive detection of nucleic acids, offering improved speed, simplicity and cost-effectiveness compared to polymerase chain reaction (PCR)-based assays. However, visual interpretation of CRISPR-Cas-based LFA test results is prone to human error, potentially leading to false-positive or false-negative outcomes when analyzing test/control lines. To address this limitation, we have developed two neural network models: one based on a fully convolutional neural network and the other on a lightweight mobile-optimized neural network for automated interpretation of CRISPR-Cas-based LFA test results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!