It is well-known that excessive cholesterol leads to hypercholesterolemia, arteriosclerosis, coronary heart disease, stroke, and other diseases, which seriously threatens human health. , a prokaryote, is reported to utilize cholesterol in the environment. However, little research focuses on the cholesterol utilization by eukaryote. Hence, the objectives of the present study were to investigate the mechanism of cholesterol utilization by the eukaryote and determine the role of oxysterol binding protein in this process. Our results showed for the first time that , a food-safe filamentous fungus, can utilize cholesterol efficiently. Our results also demonstrated that cholesterol utilization by might promote the conversion of ergosterol to ergosterol peroxide. Osh3, an oxysterol binding protein, can bind sterols (e.g., cholesterol, ergosterol, and ergosterol peroxide) and plays an important role in sterols transportation. This research is of considerable significance for developing low-fat food and cholesterol-lowering probiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441601 | PMC |
http://dx.doi.org/10.3389/fgene.2022.984343 | DOI Listing |
Chem Biol Drug Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo, Brazil.
Melanoma is an aggressive cancer that has attracted attention in recent years due to its high mortality rate of 80%. Damage caused by oxidative stress generated by radical (type I reaction) and singlet oxygen, O (type II reaction) oxidative reactions may induce cancer. Thus, studies that aim to unveil the mechanism that drives these oxidative damage processes become relevant.
View Article and Find Full Text PDFExp Parasitol
January 2025
Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Brazil. Electronic address:
The current treatment of leishmaniasis is confronted with significant challenges, including limited efficacy, adverse effects, and parasite resistance to drugs. The search for alternative therapeutic options, including the utilization of natural products, has demonstrated considerable promise. In this study, the antileishmanial activity of the flavonoid hesperetin against Leishmania donovani, the causative agent of visceral leishmaniasis, was reported for the first time.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland. Electronic address:
This study was conducted to investigate possible differences in the interactions of some selected steroids based on their distribution coefficients with cholesterol- or ergosterol-rich liposomes. Structurally cholesterol and ergosterol have very close resemblance to each other and generally it is thought that they behave in a similar manner. In this work we will show that this is not the case.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil.
Candida is a commensal fungus of clinical interest that commonly lives in oral cavity and intestine but can become an opportunist microrganism and cause severe infections. A serie of 10 aminochalcones were designed and synthetized to obtain compounds anti-Candida with potent and broad-spectrum activity. The most active compound J34 demonstrated excellent in vitro activity against Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata and Candida krusei with minimum inhibitory concentration between 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!